996 resultados para EPIGENETIC MEMORY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Double-strand breaks represent an extremely cytolethal form of DNA damage and thus pose a serious threat to the preservation of genetic and epigenetic information. Though it is well-known that double-strand breaks such as those generated by ionising radiation are among the principal causative factors behind mutations, chromosomal aberrations, genetic instability and carcino-genesis, significantly less is known about the epigenetic consequences of double-strand break formation and repair for carcinogenesis. Double-strand break repair is a highly coordinated process that requires the unravelling of the compacted chromatin structure to facilitate repair machinery access and then restoration of the original undamaged chromatin state. Recent experimental findings have pointed to a potential mechanism for double-strand break-induced epigenetic silencing. This review will discuss some of the key epigenetic regulatory processes involved in double-strand break (DSB) repair and how incomplete or incorrect restoration of chromatin structure can leave a DSB-induced epigenetic memory of damage with potentially pathological repercussions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SELECTED ORAL COMMUNICATIONS, SESSION 52: EPIGENETIC PATTERN IN OOCYTE AND EMBRYO, Tuesday 16 June 2015. This article/study appears in: Abstract book of the 31st ESHRE Annual Meeting, Lisbon, Portugal, 14-17 June 2015.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transcription in eukaryotic genomes generates an extensive array of non-protein-coding RNA, the functional significance of which is mostly unknown. We are investigating the link between non-coding RNA and chromatin regulation through analysis of FLC - a regulator of flowering time in Arabidopsis and a target of several chromatin pathways. Here we use an unbiased strategy to characterize non-coding transcripts of FLC and show that sense/antisense transcript levels correlate in a range of mutants and treatments, but change independently in cold-treated plants. Prolonged cold epigenetically silences FLC in a Polycomb-mediated process called vernalization. Our data indicate that upregulation of long non-coding antisense transcripts covering the entire FLC locus may be part of the cold-sensing mechanism. Induction of these antisense transcripts occurs earlier than, and is independent of, other vernalization markers and coincides with a reduction in sense transcription. We show that addition of the FLC antisense promoter sequences to a reporter gene is sufficient to confer cold-induced silencing of the reporter. Our data indicate that cold-induced FLC antisense transcripts have an early role in the epigenetic silencing of FLC, acting to silence FLC transcription transiently. Recruitment of the Polycomb machinery then confers the epigenetic memory. Antisense transcription events originating from 3' ends of genes might be a general mechanism to regulate the corresponding sense transcription in a condition/stage-dependent manner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les papillomavirus sont de petits virus à ADN double brin qui infectent les cellules de l’épithélium de la peau et des muqueuses d’une variété de vertébrés causant des lésions bénignes telles des verrues. Certains de ces virus sont également associés au développement de lésions malignes, notamment le cancer du col utérin. La protéine régulatrice E2 des papillomavirus est impliquée dans diverses fonctions contribuant à l’établissement de l’infection par ces virus. Entre autre, E2 régule la transcription des gènes viraux, participe à l’initiation de la réplication de l’ADN viral en s’associant à l’hélicase virale E1 et est responsable du maintien et de la ségrégation de l’épisome viral au cours de la division cellulaire. Toutes ces activités sont attribuables à la capacité de E2 à s’associer au génome viral et à interagir avec des protéines virales et cellulaires. De plus, ces fonctions sont elles-mêmes régulées par des modifications post-traductionnelles de la protéine E2. Plusieurs études ont été réalisées afin de découvrir les mécanismes de régulation des fonctions de E2 mais le rôle exact des différents domaines de E2 dans ces contrôles reste à être défini. En premier lieu, nous nous sommes intéressés à l’interaction entre E2 et Brd4(L) qui avait été définie comme étant essentielle à la ségrégation de l’épisome. Plusieurs caractéristiques associées à la protéine Brd4(L) telles que sa capacité à lier les lysines acétylées des histones, son interaction avec le complexe Mediator et sa participation à l’activation de la transcription en formant un complexe avec pTEFb, nous ont permis d’émettre l’hypothèse que l’interaction E2-Brd4(L) est nécessaire à l’activité transcriptionnelle de E2. Nous avons démontré que la protéine Brd4(L) interagit avec le domaine de transactivation de E2 de divers types de papillomavirus. De plus, cette interaction implique les résidus de E2 essentiels à son activité transcriptionnelle. Ainsi, ces résultats proposent que l’association E2-Brd4(L) serve à la régulation de la transcription des gènes viraux. Dans un second temps, nos recherches se sont concentrées sur l’existence d’une interface de dimérisation au sein du domaine de transactivation de E2 et de son implication dans les activités transcriptionnelles et réplicatives de la protéine. Nos études ont aussi mis en évidence que l’intégrité de la structure de ce domaine contribue au bon fonctionnement de la réplication du génome viral. Cette découverte suggère que la dimérisation de E2 peut réguler l’initiation de la réplication et propose l’existence d’un niveau de régulation additionnel impliquant l’état de la structure quaternaire de la protéine E2 et une modulation de l’interaction entre E1 et E2 à cette étape du cycle viral. Finalement, l’étude de l’instabilité de la protéine E2 nous a permis de définir une région importante dans le domaine flexible de la protéine, nécessaire à sa dégradation par le protéasome. De plus, la présence de résidus conservés localisés dans ce domaine, sont associés à la dégradation et portent la signature d’un signal de localisation nucléaire de type PY-NLS, suggérant que la stabilité de la protéine E2 est régulée par sa localisation au sein de la cellule. Ces études démontrent l’existence de nouvelles stratégies de régulation des activités transcriptionnelle et réplicative de la protéine E2 des papillomavirus. La compréhension de ces mécanismes nous permet de mieux cerner les étapes favorisant l’établissement et la progression du cycle viral et d’identifier de nouvelles cibles thérapeutiques contre les infections aux papillomavirus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental and epidemiological studies demonstrate that fetal growth restriction and low birth weight enhance the risk of chronic diseases in adulthood. Derangements in tissue-specific epigenetic programming of fetal and placental tissues are a suggested mechanism of which DNA methylation is best understood. DNA methylation profiles in human tissue are mostly performed in DNA from white blood cells. The objective of this study was to assess DNA methylation profiles of IGF2 DMR and H19 in DNA derived from four tissues of the newborn. We obtained from 6 newborns DNA from fetal placental tissue (n = 5), umbilical cord CD34+ hematopoietic stem cells (HSC) and CD34- mononuclear cells (MNC) (n = 6), and umbilical cord Wharton jelly (n = 5). HCS were isolated using magnetic-activated cell separation. DNA methylation of the imprinted fetal growth genes IGF2 DMR and H19 was measured in all tissues using quantitative mass spectrometry. ANOVA testing showed tissue-specific differences in DNA methylation of IGF2 DMR (p value 0.002) and H19 (p value 0.001) mainly due to a higher methylation of IGF2 DMR in Wharton jelly (mean 0.65, sd 0.14) and a lower methylation of H19 in placental tissue (mean 0.25, sd 0.02) compared to other tissues. This study demonstrates the feasibility of the assessment of differential tissue specific DNA methylation. Although the results have to be confirmed in larger sample sizes, our approach gives opportunities to investigate epigenetic profiles as underlying mechanism of associations between pregnancy exposures and outcome, and disease risks in later life.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objectives of this study were to investigate the effect of sexing by flow cytometry on the methylation patterns of the IGF2 and IGF2R genes. Frozen-thawed, unsorted, and sex-sorted sperm samples from four Nellore bulls were used. Each ejaculate was separated into three fractions: non-sexed (NS), sexed for X-sperm (SX), and sexed for Y-sperm (SY). Sperm were isolated from the extender, cryoprotectant, and other cell types by centrifugation on a 40:70% Percoll gradient, and sperm pellets were used for genomic DNA isolation. DNA was used for analyses of the methylation patterns by bisulfite sequencing. Methylation status of the IGF2 and IGF2R genes were evaluated by sequencing 195 and 147 individual clones, respectively. No global differences in DNA methylation were found between NS, SX, and SY groups for the IGF2 (P=0.09) or IGF2R genes (P=0.38). Very specific methylation patterns were observed in the 25th and 26th CpG sites in the IGF2R gene. representing higher methylation in NS than in the SX and SY groups compared with the other CpG sites. Further, individual variation in methylation patterns was found among bulls. In conclusion, the sex-sorting procedure by flow cytometry did not affect the overall DNA methylation patterns of the IGF2 and IGF2R genes, although individual variation in their methylation patterns among bulls was observed. Mol. Reprod. Dev. 79:7784, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The term non-coding RNA (ncRNA) is commonly employed for RNA that does not encode a protein, but this does not mean that such RNAs do not contain information nor have function. Although it has been generally assumed that most genetic information is transacted by proteins, recent evidence suggests that the majority of the genomes of mammals and other complex organisms is in fact transcribed into ncRNAs, many of which are alternatively spliced and/or processed into smaller products. These ncRNAs include microRNAs and snoRNAs (many if not most of which remain to be identified), as well as likely other classes of yet-to-be-discovered small regulatory RNAs, and tens of thousands of longer transcripts (including complex patterns of interlacing and overlapping sense and antisense transcripts), most of whose functions are unknown. These RNAs (including those derived from introns) appear to comprise a hidden layer of internal signals that control various levels of gene expression in physiology and development, including chromatin architecture/epigenetic memory, transcription, RNA splicing, editing, translation and turnover. RNA regulatory networks may determine most of our complex characteristics, play a significant role in disease and constitute an unexplored world of genetic variation both within and between species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neurodevelopmental disruptions caused by obstetric complications play a role in the etiology of several phenotypes associated with neuropsychiatric diseases and cognitive dysfunctions. Importantly, it has been noticed that epigenetic processes occurring early in life may mediate these associations. Here, DNA methylation signatures at IGF2 (insulin-like growth factor 2) and IGF2BP1-3 (IGF2-binding proteins 1-3) were examined in a sample consisting of 34 adult monozygotic (MZ) twins informative for obstetric complications and cognitive performance. Multivariate linear regression analysis of twin data was implemented to test for associations between methylation levels and both birth weight (BW) and adult working memory (WM) performance. Familial and unique environmental factors underlying these potential relationships were evaluated. A link was detected between DNA methylation levels of two CpG sites in the IGF2BP1 gene and both BW and adult WM performance. The BW-IGF2BP1 methylation association seemed due to non-shared environmental factors influencing BW, whereas the WM-IGF2BP1 methylation relationship seemed mediated by both genes and environment. Our data is in agreement with previous evidence indicating that DNA methylation status may be related to prenatal stress and later neurocognitive phenotypes. While former reports independently detected associations between DNA methylation and either BW or WM, current results suggest that these relationships are not confounded by each other.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The vascular complications of diabetes significantly impact the quality of life and mortality in diabetic patients. Extensive evidence from various human clinical trials has clearly established that a period of poor glycemic control early in the disease process carries negative consequences, such as an increase in the development and progression of vascular complications that becomes evident many years later. Importantly, intensive glycemic control established later in the disease process cannot reverse or slow down the onset or progression of diabetic vasculopathy. This has been named the glycemic memory phenomenon. Scientists have successfully modelled glycemic memory using various in vitro and in vivo systems. This review emphasizes that oxidative stress and accumulation of advanced glycation end products are key factors driving glycemic memory in endothelial cells. Furthermore, various epigenetic marks have been proposed to closely associate with vascular glycemic memory. In addition, we comment on the importance of endothelial progenitors and their role as endogenous vasoreparative cells that are negatively impacted by the diabetic milieu and may constitute a "carrier" of glycemic memory. Considering the potential of endothelial progenitor-based cytotherapies, future studies on their glycemic memory are warranted to develop epigenetics-based therapeutics targeting diabetic vascular complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well established that the coordinated regulation of activity-dependent gene expression by the histone acetyltransferase (HAT) family of transcriptional coactivators is crucial for the formation of contextual fear and spatial memory, and for hippocampal synaptic plasticity. However, no studies have examined the role of this epigenetic mechanism within the infralimbic prefrontal cortex (ILPFC), an area of the brain that is essential for the formation and consolidation of fear extinction memory. Here we report that a postextinction training infusion of a combined p300/CBP inhibitor (Lys-CoA-Tat), directly into the ILPFC, enhances fear extinction memory in mice. Our results also demonstrate that the HAT p300 is highly expressed within pyramidal neurons of the ILPFC and that the small-molecule p300-specific inhibitor (C646) infused into the ILPFC immediately after weak extinction training enhances the consolidation of fear extinction memory. C646 infused 6 h after extinction had no effect on fear extinction memory, nor did an immediate postextinction training infusion into the prelimbic prefrontal cortex. Consistent with the behavioral findings, inhibition of p300 activity within the ILPFC facilitated long-term potentiation (LTP) under stimulation conditions that do not evoke long-lasting LTP. These data suggest that one function of p300 activity within the ILPFC is to constrain synaptic plasticity, and that a reduction in the function of this HAT is required for the formation of fear extinction memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel memory-based embodied cognitive architecture is introduced – the MBC architecture. It is founded upon neuropsychological theory, and may be applied to investigating the interplay of embodiment, autonomy, and environmental interaction as related to the development of cognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With life expectancies increasing around the world, populations are getting age and neurodegenerative diseases have become a global issue. For this reason we have focused our attention on the two most important neurodegenerative diseases: Parkinson’s and Alzheimer’s. Parkinson’s disease is a chronic progressive neurodegenerative movement disorder of multi-factorial origin. Environmental toxins as well as agricultural chemicals have been associated with PD. Has been observed that N/OFQ contributes to both neurotoxicity and symptoms associated with PD and that pronociceptin gene expression is up-regulated in rat SN of 6-OHDA and MPP induced experimental parkinsonism. First, we investigated the role of N/OFQ-NOP system in the pathogenesis of PD in an animal model developed using PQ and/or MB. Then we studied Alzheimer's disease. This disorder is defined as a progressive neurologic disease of the brain leading to the irreversible loss of neurons and the loss of intellectual abilities, including memory and reasoning, which become severe enough to impede social or occupational functioning. Effective biomarker tests could prevent such devastating damage occurring. We utilized the peripheral blood cells of AD discordant monozygotic twin in the search of peripheral markers which could reflect the pathology within the brain, and also support the hypothesis that PBMC might be a useful model of epigenetic gene regulation in the brain. We investigated the mRNA levels in several genes involve in AD pathogenesis, as well DNA methylation by MSP Real-Time PCR. Finally by Western Blotting we assess the immunoreactivity levels for histone modifications. Our results support the idea that epigenetic changes assessed in PBMCs can also be useful in neurodegenerative disorders, like AD and PD, enabling identification of new biomarkers in order to develop early diagnostic programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinetochores assemble on distinct 'centrochromatin' containing the histone H3 variant CENP-A and interspersed nucleosomes dimethylated on H3K4 (H3K4me2). Little is known about how the chromatin environment at active centromeres governs centromeric structure and function. Here, we report that centrochromatin resembles K4-K36 domains found in the body of some actively transcribed housekeeping genes. By tethering the lysine-specific demethylase 1 (LSD1), we specifically depleted H3K4me2, a modification thought to have a role in transcriptional memory, from the kinetochore of a synthetic human artificial chromosome (HAC). H3K4me2 depletion caused kinetochores to suffer a rapid loss of transcription of the underlying α-satellite DNA and to no longer efficiently recruit HJURP, the CENP-A chaperone. Kinetochores depleted of H3K4me2 remained functional in the short term, but were defective in incorporation of CENP-A, and were gradually inactivated. Our data provide a functional link between the centromeric chromatin, α-satellite transcription, maintenance of CENP-A levels and kinetochore stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inducible epigenetic changes in eukaryotes are believed to enable rapid adaptation to environmental fluctuations. We have found distinct regions of the Arabidopsis genome that are susceptible to DNA (de)methylation in response to hyperosmotic stress. The stress-induced epigenetic changes are associated with conditionally heritable adaptive phenotypic stress responses. However, these stress responses are primarily transmitted to the next generation through the female lineage due to widespread DNA glycosylase activity in the male germline, and extensively reset in the absence of stress. Using the CNI1/ATL31 locus as an example, we demonstrate that epigenetically targeted sequences function as distantly-acting control elements of antisense long non-coding RNAs, which in turn regulate targeted gene expression in response to stress. Collectively, our findings reveal that plants use a highly dynamic maternal 'short-term stress memory' with which to respond to adverse external conditions. This transient memory relies on the DNA methylation machinery and associated transcriptional changes to extend the phenotypic plasticity accessible to the immediate offspring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ageing process results from a complex interplay between genes and the environment that can precipitate an uncontrolled inflammation. Epigenetic changes are believed to provide a link between the environment and nutrition to gene expression by altering the activity of some histone-modifying protein. Epigenetic modifications of DNA and histone proteins have been proposed as important contributory mechanisms to the retention of metabolic memory over time. A thorough understanding of the posttranscriptional and epigenetic factors involved in both normal ageing and age-related disease may inform new strategies and approaches to diagnose, treat, or suppress many aspects of age-dependent frailty.