Tissue- specific DNA methylation profiles in newborns


Autoria(s): Galvez Bermudez, Jubby Marcela
Contribuinte(s)

Steegers - Theunissen, Regine

Data(s)

02/09/2011

Resumo

Experimental and epidemiological studies demonstrate that fetal growth restriction and low birth weight enhance the risk of chronic diseases in adulthood. Derangements in tissue-specific epigenetic programming of fetal and placental tissues are a suggested mechanism of which DNA methylation is best understood. DNA methylation profiles in human tissue are mostly performed in DNA from white blood cells. The objective of this study was to assess DNA methylation profiles of IGF2 DMR and H19 in DNA derived from four tissues of the newborn. We obtained from 6 newborns DNA from fetal placental tissue (n = 5), umbilical cord CD34+ hematopoietic stem cells (HSC) and CD34- mononuclear cells (MNC) (n = 6), and umbilical cord Wharton jelly (n = 5). HCS were isolated using magnetic-activated cell separation. DNA methylation of the imprinted fetal growth genes IGF2 DMR and H19 was measured in all tissues using quantitative mass spectrometry. ANOVA testing showed tissue-specific differences in DNA methylation of IGF2 DMR (p value 0.002) and H19 (p value 0.001) mainly due to a higher methylation of IGF2 DMR in Wharton jelly (mean 0.65, sd 0.14) and a lower methylation of H19 in placental tissue (mean 0.25, sd 0.02) compared to other tissues. This study demonstrates the feasibility of the assessment of differential tissue specific DNA methylation. Although the results have to be confirmed in larger sample sizes, our approach gives opportunities to investigate epigenetic profiles as underlying mechanism of associations between pregnancy exposures and outcome, and disease risks in later life.

Erasmus MC, University Medical Center Rotterdam, The Netherlands

Experimental and epidemiological studies demonstrate that fetal growth restriction and low birth weight enhance the risk of chronic diseases in adulthood. Derangements in tissue-specific epigenetic programming of fetal and placental tissues are a suggested mechanism of which DNA methylation is best understood. DNA methylation profiles in human tissue are mostly performed in DNA from white blood cells. The objective of this study was to assess DNA methylation profiles of IGF2 DMR and H19 in DNA derived from four tissues of the newborn. We obtained from 6 newborns DNA from fetal placental tissue (n = 5), umbilical cord CD34+ hematopoietic stem cells (HSC) and CD34- mononuclear cells (MNC) (n = 6), and umbilical cord Wharton jelly (n = 5). HCS were isolated using magnetic-activated cell separation. DNA methylation of the imprinted fetal growth genes IGF2 DMR and H19 was measured in all tissues using quantitative mass spectrometry. ANOVA testing showed tissue-specific differences in DNA methylation of IGF2 DMR (p value 0.002) and H19 (p value 0.001) mainly due to a higher methylation of IGF2 DMR in Wharton jelly (mean 0.65, sd 0.14) and a lower methylation of H19 in placental tissue (mean 0.25, sd 0.02) compared to other tissues. This study demonstrates the feasibility of the assessment of differential tissue specific DNA methylation. Although the results have to be confirmed in larger sample sizes, our approach gives opportunities to investigate epigenetic profiles as underlying mechanism of associations between pregnancy exposures and outcome, and disease risks in later life.

Formato

application/pdf

Identificador

http://repository.urosario.edu.co/handle/10336/4138

Idioma(s)

spa

Publicador

Facultad de medicina

Direitos

info:eu-repo/semantics/closedAccess

Fonte

reponame:Repositorio Institucional EdocUR

instname:Universidad del Rosario

Hanson MA, Gluckman PD. Developmental origins of health and disease: new insights. Basic Clin Pharmacol Toxicol 2008; 102:90-3.

Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, Rodford J, Slater-Jefferies JL, Garratt E, Crozier SR, Emerald BS, Gale CR, Inskip HM, Cooper C, Hanson MA. Epigenetic Gene Promoter Methylation at Birth Is Associated With Child's Later Adiposity. Diabetes 2011.

Rakyan VK, Down TA, Thorne NP, Flicek P, Kulesha E, Graf S, Tomazou EM, Backdahl L, Johnson N, Herberth M, Howe KL, Jackson DK, Miretti MM, Fiegler H, Marioni JC, Birney E, Hubbard TJ, Carter NP, Tavare S, Beck S. An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res 2008; 18:1518-29.

Ghosh S, Yates AJ, Fruhwald MC, Miecznikowski JC, Plass C, Smiraglia D. Tissue specific DNA methylation of CpG islands in normal human adult somatic tissues distinguishes neural from non-neural tissues. Epigenetics 2010; 5:527-38.

Khavari DA, Sen GL, Rinn JL. DNA methylation and epigenetic control of cellular differentiation. Cell Cycle 2010; 9:3880-3.

Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16:6- 21.

Ollikainen M, Smith KR, Joo EJ, Ng HK, Andronikos R, Novakovic B, Abdul Aziz NK, Carlin JB, Morley R, Saffery R, Craig JM. DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Hum Mol Genet 2010; 19:4176-88.

Fowden AL, Sibley C, Reik W, Constancia M. Imprinted genes, placental development and fetal growth. Horm Res 2006; 65 Suppl 3:50-8.

Edwards RG, Hansis C. Initial differentiation of blastomeres in 4-cell human embryos and its significance for early embryogenesis and implantation. Reprod Biomed Online 2005; 11:206-18.

Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (noninsulin- dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 1993; 36:62-7.

Hemberger M. Genetic-epigenetic intersection in trophoblast differentiation: implications for extraembryonic tissue function. Epigenetics 2010; 5:24-9.

Tabano S, Colapietro P, Cetin I, Grati FR, Zanutto S, Mando C, Antonazzo P, Pileri P, Rossella F, Larizza L, Sirchia SM, Miozzo M. Epigenetic modulation of the IGF2/H19 imprinted domain in human embryonic and extra-embryonic compartments and its possible role in fetal growth restriction. Epigenetics 2010; 5:313-24

Nelissen EC, van Montfoort AP, Dumoulin JC, Evers JL. Epigenetics and the placenta. Hum Reprod Update 2011; 17:397-417.

Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 2004; 22:1330-7.

Serman. Impact of DNA methylation on trophoblast function. Clinical Epigenetics 2011.

Tobi EW, Heijmans BT, Kremer D, Putter H, Delemarre-van de Waal HA, Finken MJ, Wit JM, Slagboom PE. DNA methylation of IGF2, GNASAS, INSIGF and LEP and being born small for gestational age. Epigenetics 2011; 6:171-6.

Heijmans BT, Kremer D, Tobi EW, Boomsma DI, Slagboom PE. Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Hum Mol Genet 2007; 16:547-54.

Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G, Cantor CR, Field JK, van den Boom D. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci U S A 2005; 102:15785-90.

TMM 0002 2012

Palavras-Chave #COMPLICACIONES DEL EMBARAZO - ASPECTOS GENÉTICOS #ENFERMEDADES CRÓNICAS #ENFERMEDADES GENÉTICAS EN EL EMBARAZO #METILACIÓN DE ADN #Epigenomics #Umbilical cord #Hematopoietic stem cell #Leukocytes #Wharton jelly #Placenta #Imprinting #IGF2 #H19
Tipo

info:eu-repo/semantics/masterThesis

info:eu-repo/semantics/acceptedVersion