11 resultados para ENDOR
Resumo:
Lipmann Mose Büschenthal
Resumo:
Lipmann Mose Büschenthal
Resumo:
Lipmann Mose Büschenthal
Resumo:
Lipmann Mose Büschenthal
Resumo:
Erwin Rosenberger
Resumo:
In this thesis three experiments with atomic hydrogen (H) at low temperatures T<1 K are presented. Experiments were carried out with two- (2D) and three-dimensional (3D) H gas, and with H atoms trapped in solid H2 matrix. The main focus of this work is on interatomic interactions, which have certain specific features in these three systems considered. A common feature is the very high density of atomic hydrogen, the systems are close to quantum degeneracy. Short range interactions in collisions between atoms are important in gaseous H. The system of H in H2 differ dramatically because atoms remain fixed in the H2 lattice and properties are governed by long-range interactions with the solid matrix and with H atoms. The main tools in our studies were the methods of magnetic resonance, with electron spin resonance (ESR) at 128 GHz being used as the principal detection method. For the first time in experiments with H in high magnetic fields and at low temperatures we combined ESR and NMR to perform electron-nuclear double resonance (ENDOR) as well as coherent two-photon spectroscopy. This allowed to distinguish between different types of interactions in the magnetic resonance spectra. Experiments with 2D H gas utilized the thermal compression method in homogeneous magnetic field, developed in our laboratory. In this work methods were developed for direct studies of 3D H at high density, and for creating high density samples of H in H2. We measured magnetic resonance line shifts due to collisions in the 2D and 3D H gases. First we observed that the cold collision shift in 2D H gas composed of atoms in a single hyperfine state is much smaller than predicted by the mean-field theory. This motivated us to carry out similar experiments with 3D H. In 3D H the cold collision shift was found to be an order of magnitude smaller for atoms in a single hyperfine state than that for a mixture of atoms in two different hyperfine states. The collisional shifts were found to be in fair agreement with the theory, which takes into account symmetrization of the wave functions of the colliding atoms. The origin of the small shift in the 2D H composed of single hyperfine state atoms is not yet understood. The measurement of the shift in 3D H provides experimental determination for the difference of the scattering lengths of ground state atoms. The experiment with H atoms captured in H2 matrix at temperatures below 1 K originated from our work with H gas. We found out that samples of H in H2 were formed during recombination of gas phase H, enabling sample preparation at temperatures below 0.5 K. Alternatively, we created the samples by electron impact dissociation of H2 molecules in situ in the solid. By the latter method we reached highest densities of H atoms reported so far, 3.5(5)x1019 cm-3. The H atoms were found to be stable for weeks at temperatures below 0.5 K. The observation of dipolar interaction effects provides a verification for the density measurement. Our results point to two different sites for H atoms in H2 lattice. The steady-state nuclear polarizations of the atoms were found to be non-thermal. The possibility for further increase of the impurity H density is considered. At higher densities and lower temperatures it might be possible to observe phenomena related to quantum degeneracy in solid.
Resumo:
Der erste Teil der vorliegenden Dissertation beschäftigt sich mit der Eignung des ?,?-dithiolfunktionalisierten Poly(para-phenylenethinylen)s (PPE) als sogenannter âmolekularer Drahtâ für die molekulare Elektronik. Über die HECK-CASSAR-SONOGASHIRA-Reaktion wurden vollständig endfunktionalisierte, defektfreie Polymere mit durchschnittlichen Polymerisationsgraden von bis zu 45 Repetitionseinheiten synthetisiert. Die starke Aggregationsneigung der PPE, die die Anordnung der Polymerketten zwischen den Goldelektroden unterstützen soll, wurde mittels Rasterkraft- und Rastertunnelmikroskopie untersucht. Für die Untersuchungen zur Dotierbarkeit wurden ESR-, ENDOR-, UPS- und XPS-Messungen durchgeführt. Es konnte gezeigt werden, dass sich das PPE reduzieren lässt.Im zweiten Teil der Arbeit wurden die PPE zur Synthese von Stäbchen-Knäuel-Diblockcopolymeren eingesetzt. Die Darstellung erfolgte nach der 'grafting onto'-Methode, indem monocarboxyl-endfunktionalisiertes PPE mit flexiblen monohydroxyl-endfunktionalisiertem Polyethylenglykol, Polydimethylsulfoxid bzw. Polytetrahydrofuran verestert wurde. Den Nachweis der Diblockcopolymerbildung erbrachten die 1H?NMR-Spektroskopie und die für Diblockcopolymere noch wenig angewandte MALDI-TOF-Massenspektrometrie. Mittels Rasterkraftmikroskopie und Computersimulationen zur Molekularmechanik und -dynamik wurden die Aggregationseigenschaften der Diblockcopolymere untersucht.
Resumo:
Ziel der vorliegenden Arbeit war die Untersuchung von Struktur und Dynamik in Polymer-Ton-Nanokompositen mittels EPR-Spektroskopie; damit sollten ein Beitrag zur Analyse der Tensidschicht in solchen Systemen geleistet und die Ergebnisse anderer Messmethoden ergänzt werden. Die Tensidschicht in Polymer-Ton-Nanokompositen nimmt großen Einfluss auf das System, denn sie bestimmt die Wechselwirkung zwischen Ton und Polymer: Damit hydrophiler Ton gut mit hydrophobem Polymer (hier Polystyrol) mischbar ist, muss das Schichtsilikat zunächst mit Tensiden organisch-modifiziert werden; dies geschieht durch Kationenaustausch der Natriumionen im Ton gegen Tenside. Um mit Hilfe der EPR einen Einblick in die Tensidschicht zu gewinnen, muss etwa 1% der zur Tonmodifizierung eingesetzten Amphiphile spinmarkiert sein. So gelang es im Rahmen dieser Arbeit, Tenside mit verschiedenen Kopfgruppen, nämlich Trimethylammonium- bzw. Trimethylphosphoniumtenside, zu synthetisieren und sie an verschiedenen Positionen ihrer hydrophoben Alkylkette mit einem Nitroxidradikal zu markieren. Das Nitroxidradikal diente als Spinsonde für die EPR-Experimente. Neben der Synthese verschiedener, spinmarkierter Amphiphile, der anschließenden Darstellung organisch-modifizierten Tons (Kationenaustausch) und verschiedener Polymer-Ton-Nanokomposite (Schmelzinterkalation) wurden alle Proben mittels EPR-Spektroskopie untersucht; dabei wurden sowohl cw- als auch gepulste Messtechniken eingesetzt. Aus cw-Experimenten ging hervor, dass die Dynamik der gesamten Tensidschicht mit der Temperatur zunimmt und die Mobilität der hydrophoben Tensidalkylkette mit wachsendem Abstand zu ihrer Kopfgruppe wächst. Zugabe von Polymer behindert bei steigender Temperatur das Anschwellen des Tons bei Aufschmelzen der Tensidschicht; die Dynamik des Systems ist eingeschränkt. Mit Hilfe gepulster EPR-Messungen (ENDOR und ESEEM), die Informationen über Abstände bzw. Kontakt in den untersuchten Systemen lieferten, ließ sich ein Strukturmodell der Polymer-Ton-Nanokomposite skizzieren, das Vorstellungen anderer, älterer Methoden unterstützt: Hierbei richten sich die Tenside in Multischichten unterschiedlicher Mobilität parallel zur Tonoberfläche aus.
Resumo:
Zusammenfassung Nanokomposite aus Polymeren und Schichtsilikaten werden zumeist auf der Basis natürlicher Tone wie Montmorillonit hergestellt. Für NMR- und EPR-Untersuchungen der Tensidschicht, die das Silikat mit dem Polymer kompatibilisiert, ist der Eisengehalt natürlicher Tone jedoch abträglich, weil er zu einer Verkürzung der Relaxationszeiten und zu einer Linienverbreiterung in den Spektren führt. Dieses Problem konnte überwunden werden, indem als Silikatkomponente eisenfreies, strukturell wohldefiniertes Magadiit hydrothermal synthetisiert und für die Kompositbildung eingesetzt wurde. Die Morphologie des Magadiits wurde durch Rasterelektronenmikroskopie charakterisiert und der Interkalationsgrad von schmelzinterkalierten Polymer-Nanokompositen wurde durch Weitwinkelröntgenstreuung bestimmt. Polymere mit Carbonylgruppen scheinen leichter zu interkalieren als solche ohne Carbonylgruppen. Polycaprolacton interkalierte sowohl in Oragnomagadiite auf der Basis von Ammoniumtensiden als auch in solche auf der Basis von Phosphoniumtensiden. Die Dynamik auf einer Nanosekundenzeitskala und die Struktur der Tensidschicht wurden mittels ortsspezifisch spinmarkierter Tensidsonden unter Nutzung von Dauerstrich- (CW) und Puls-Methoden der elektronenparamagnetischen Resonanzspektroskopie (EPR) untersucht. Zusätzlich wurde die statische 2H-Kernmagnetresonanz (NMR) an spezifisch deuterierten Tensiden angewendet, um die Tensiddynamik auf einer komplementären Zeitskala zwischen Mikrosekunden und Millisekunden zu erfassen. Sowohl die CW-EPR- als auch die 2H-NMR-Ergebnisse zeigen eine Beschleunigung der Tensiddynamik durch Interkalation von Polycaprolacton auf, während sich in den nichtinterkalierten Mikrokompositen mit Polystyrol die Tensiddynamik verlangsamt. Die Rotationskorrelationszeiten und Aktivierungsenergien offenbaren verschiedene Regime der Tensiddynamik. In Polystyrol-Mikrokompositen entspricht die Übergangstemperatur zwischen den Regimen der Glasübergangstemperatur von Polystyrol, während sie in Polycaprolacton-Nanokompositen bei der Schmelztemperatur von Polycaprolacton liegt. Durch die erhebliche Verlängerung der Elektronenspin-Relaxationszeiten bei Verwendung von eisenfreiem Magadiit können Messdaten hoher Qualität mit Puls-EPR-Experimenten erhalten werden. Insebsondere wurden die Vier-Puls-Elektron-Elektron-Doppelresonanz (DEER), die Elektronenspinechoenveloppenmodulation (ESEEM) und die Elektronen-Kern-Doppelresonanz (ENDOR) an spinmarkierten sowie spezifisch deuterierten Tensiden angewandt. Die ENDOR-Ergebnisse legen ein Model der Tensidschicht nahe, in dem zusätzlich zu den Oberflächenlagen auf dem Silikat eine wohldefinierte mittlere Lage existiert. Dieses Modell erklärt auch Verdünnungseffekte durch das Polymer in Kompositen mit Polycaprolacton und Polystyrol. Die umfangreiche Information aus den Magnetresonanztechniken ergänzt die Information aus konventionellen Charakterisierungstechniken wie Röntgendiffraktion und Transmissionselektronenmikroskopie und führt so zu einem detaillierteren Bild der Struktur und Dynamik der Tensidschicht in Nanokompositen aus Polymeren und Schichtsilikaten.
Resumo:
In this thesis, three nitroxide based ionic systems were used to investigate structure and dynamics of their respective solutions in mixed solvents by means of electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopy at X- and W-band (9.5 and 94.5 GHz, respectively). rnFirst, the solvation of the inorganic radical Fremy’s salt (K2ON(SO3)2) in isotope substituted binary solvent mixtures (methanol/water) was investigated by means of high-field (W-band) pulse ENDOR spectroscopy and molecular dynamics (MD) simulations. From the analysis of orientation-selective 1H and 2H ENDOR spectra the principal components of the hyperfine coupling (hfc) tensor for chemically different protons (alcoholic methyl vs. exchangeable protons) were obtained. The methyl protons of the organic solvent approach with a mean distance of 3.5 Å perpendicular to the approximate plane spanned by ON(S)2 of the probe molecule. Exchangeable protons were found to be distributed isotropically, approaching closest to Fremy’s salt from the hydrogen-bonded network around the sulfonate groups. The distribution of exchangeable and methyl protons as found in MD simulations is in full agreement with the ENDOR results. The solvation was found to be similar for the studied solvent ratios between 1:2.3 and 2.3:1 and dominated by an interplay of H-bond (electrostatic) interactions and steric considerations with the NO group merely involved into H-bonds.rnFurther, the conformation of spin labeled poly(diallyldimethylammonium chloride) (PDADMAC) solutions in aqueous alcohol (methanol, ethanol, n-propanol, ethylene glycol, glycerol) mixtures in dependence of divalent sodium sulfate was investigated with double electron-electron resonance (DEER) spectroscopy. The DEER data was analyzed using the worm-like chain model which suggests that in organic-water solvent mixtures the polymer backbones are preferentially solvated by the organic solvent. We found a less serve impact on conformational changes due to salt than usually predicted in polyelectrolyte theory which stresses the importance of a delicate balance of hydrophobic and electrostatic interactions, in particular in the presence of organic solvents.rnFinally, the structure and dynamics of miniemulsions and polymerdispersions prepared with anionic surfactants, that were partially replaced by a spin labeled fatty acid in presence and absence of a lanthanide beta-diketonate complex was characterized by CW EPR spectroscopy. Such miniemulsions form multilayers with the surfactant head group bound to the lanthanide ion. Beta-diketonates were formerly used as NMR shift reagents and nowadays find application as luminescent materials in OLEDs and LCDs and as contrast agent in MRT. The embedding of the complex into a polymer matrix results in an easy processable material. It was found that the structure formation takes place in miniemulsion and is preserved during polymerization. For surfactants with carboxyl-head group a higher order of the alkyl chains and less lateral diffusion is found than for sulfat-head groups, suggesting a more uniform and stronger coordination to the metal ion. The stability of these bilayers depends on the temperature and the used surfactant which should be considered for the used polymerization temperature if a maximum output of the structured regions is wished.
Resumo:
Electron spin echo electron-nuclear double resonance (ESE-ENDOR) experiments performed on a broad radical electron paramagnetic resonance (EPR) signal observed in photosystem II particles depleted of Ca2+ indicate that this signal arises from the redox-active tyrosine YZ. The tyrosine EPR signal width is increased relative to that observed in a manganese-depleted preparation due to a magnetic interaction between the photosystem II manganese cluster and the tyrosine radical. The manganese cluster is located asymmetrically with respect to the symmetry-related tyrosines YZ and YD. The distance between the YZ tyrosine and the manganese cluster is estimated to be approximately 4.5 A. Due to this close proximity of the Mn cluster and the redox-active tyrosine YZ, we propose that this tyrosine abstracts protons from substrate water bound to the Mn cluster.