993 resultados para ENANTIOSELECTIVE SYNTHESIS
Resumo:
Enantioselective synthesis of possible diastereomers of heptadeca-1-ene-4,6-diyne-3,8,9,10-tetrol, a structure proposed for the natural product isolated from Hydrocotyle leucocephala is accomplished. The reported spectral data of the natural product did not match those of any of the isomers that were synthesized and established that the structure proposed for the natural product is not correct and requires revision.
Resumo:
Enantioselective synthesis of both the enantiomeric forms of the hydrindane derivatives mentioned in the title, potential chiral precursors in terpenoid synthesis, starling from R-carvone employing two different cyclopentannulation methodologies is described.
Resumo:
A new, simple and preparatively useful protocol for the construction of a-vinyl ketones, particularly those bearing a quaternary carbon centre, from the corresponding alkenes has been devised. Our four-step strategy consists of dichloroketene addition, base catalysed ring contraction to 'push-pull' cyclopropane esters, reduction and eliminative cyclopropane fragmentation to unravel the a-vinyl ketone moiety. The generality of this approach has been demonstrated with a few representative olefins and good regio- and stereocontrol has been observed. As an application of this methodology, an enantioselective synthesis of sesquiterpene hydrocarbon (+)-alpha-elemene (42) from R-(+)-limonene (43) has been accomplished.
Resumo:
A catalytic enantioselective sulfa-Michael/Horner-Wadsworth-Emmons reaction cascade has been developed, taking advantage of phosphonate as an electrophilic activator and a traceless binding site. Using a chiral bifunctional urea derivative as the catalyst, a variety of aryl and heteroaryl substituted thiochromenes was obtained in excellent yield with a high level of enantioselectivity.
Resumo:
An enantioselective synthesis of the macrolactone core of natural product Sch725674 was accomplished from furfural. Key reactions in assembly of the macrolactone are the use of furan as a but-2-ene-dione equivalent and ring closing metathesis. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A cascade aldol cyclization reaction between 3-isothiocyanato oxindoles and alpha-ketophosphonates has been developed for the synthesis of beta-amino-alpha-hydroxyphosphonate derivatives. Catalyzed by a quinine-based tertiary amino-thiourea derivative, this reaction delivers 2-thioxooxazolidinyl phosphonates based on a spirooxindole scaffold bearing two contiguous quaternary stereogenic centers in high yields with excellent diastereo- (up to >20:1 dr) and enantioselectivities (up to >99:1 er).
Resumo:
The synthesis of a GSK 2(nd) generation inhibitor of the hepatitis C virus, by enantioselective 1,3-dipolar cycloaddition between a leucine derived iminoester and tert-butyl acrylate, was studied. The comparison between silver(I) and gold(I) catalysts in this reaction was established by working with chiral phosphoramidites or with chiral BINAP. The best reaction conditions were used for the total synthesis of the hepatitis C virus inhibitor by a four step procedure affording this product in 99% ee and in 63% overall yield. The origin of the enantioselectivity of the chiral gold(I) catalyst was justified according to DFT calculations, the stabilizing coulombic interaction between the nitrogen atom of the thiazole moiety and one of the gold atoms being crucial.
Resumo:
Pyrroloindoline and unnatural tryptophan motifs are important targets for synthesis based on their incorporation into a diverse array of biologically active natural products. Both types of alkaloids have also found applications as chiral catalysts and tryptophan derivatives are commonly employed as biological probes. On account of their applications, these frameworks have inspired the development of numerous enantioselective, catalytic reactions. In particular, the past few years have witnessed an impressive number of novel approaches for pyrroloindoline formation.
The first project described herein involves our contribution to pyrroloindoline research. We have developed an (R)-BINOL•SnCl4-catalyzed formal (3 + 2) cycloaddition reaction between 3-substituted indoles and 2-amidoacrylates that affords pyrroloindoline-2-carboxylates bearing an all-carbon quaternary center. Mechanistic studies have elucidated that the enantiodetermining step is a highly face-selective catalyst-controlled protonation reaction. The subsequent application of this asymmetric protonation strategy to the synthesis of a variety of enantioenriched tryptophan derivatives is also discussed.
Resumo:
The primary focus of this thesis was the asymmetric peroxidation of α,β-unsaturated aldehydes and the development of this methodology to include the synthesis of bioactive chiral 1,2-dioxane and 1,2-dioxalane rings. In Chapter 1 a review detailing the new and improved methods for the acyclic introduction of peroxide functionality to substrates over the last decade was discussed. These include a detailed examination of metal-mediated transformations, chiral peroxidation using organocatalytic means and the improvements in methodology of well-established peroxidation pathways. The second chapter discusses the method by which peroxidation of our various substrates was attempted and the optimisation studies associated with these reactions. The method by which the enantioselectivity of our β-peroxyaldehydes was determined is also reviewed. Chapters 3 and 4 focus on improving the enantioselectivity associated with our asymmetric peroxidation reaction. A comprehensive analysis exploring the effect of solvent, concentration and temperature on enantioselectivity was examined. The effect that different catalytic systems have on enantioselectivity and reactivity was also investigated in depth. Chapter 5 details the various transformations that β-peroxyaldehydes can undergo and the manipulation of these transformations towards the establishment of several routes for the formation of chiral 1,2-dioxane and 1,2-dioxalane rings. Chapter 6 details the full experimental procedures, including spectroscopic and analytical data for the compounds prepared during this research.
Resumo:
Two efficient, regio- and stereo controlled synthetic approaches to the synthesis of racemic analogs of pancratistatin have been accomplished and they serve as the model systems for the total synthesis of optically active 7-deoxy-pancratistatin. In the Diels-Alder approach, an efficient [4+2] cycloaddition of 3,4-methylenedioxyco- nitrostyrene with Danishefsky's diene to selectively form an exo-nitro adduct has been developed as the key step in the construction of the C-ring of the target molecule. In the Michael addition approach, the key step was a conjugate addition of an organic zinc-cuprate to the 3,4-methylenedioxy-(B-nitrostyrene, followed by a diastereocontroUed closure to form the cyclohexane C-ring of the target molecule via an intramolecular nitro-aldol cyclization on a neutral alumina surface. A chair-like transition state for such a cyclization has been established and such a chelation controlled transition state can be useful in the prediction of diastereoselectivity in other related 6-exo-trig nitroaldol reactions. Cyclization of the above products fi^om both approaches by using a Bischler-Napieralski type reaction afforded two lycoricidine derivatives 38 and 50 in good yields. The initial results from the above modeling studies as well as the analysis of the synthetic strategy were directed to a chiral pool approach to the total synthesis of optically active 7-deoxy-pancratistatin. Selective monsilylation and iodination of Ltartaric acid provided a chiral precursor for the proposed key Michael transformation. The outlook for the total synthesis of 7-deoxy-pancratistatin by this approach is very promising.A concise synthesis of novel designed, optically pure, Cz-symmetrical disulfonylamide chiral ligands starting from L-tartaric acid has also been achieved. This sequence employs the metallation of indole followed by Sfj2 replacement of a dimesylate as the key step. The activity for this Cz-symmetric chiral disulfonamide ligand in the catalytic enantioselective reaction has been confirmed by nucleophilic addition to benzaldehyde in the disulfonamide-Ti (0-i-Pr)4-diethylzinc system with a 48% yield and a 33% e.e. value. Such a ligand tethered with a suitable metal complex should be also applicable towards the total synthesis of 7-deoxy-pancratistatin.
Resumo:
The present studies describe our recent progress in target oriented synthesis of complex organic molecules from aromatic precursors. The latest synthetic approaches toward vinca alkaloids are described and include the construction of model substrates for the investigation into Diels-Alder, radical cascade, and tandem Michael addition reactions as possible routes to the family of alkaloids. Also described are the chemoenzymatic syntheses of the natural product (-)-idesolide and unnatural polyhydroxylated pyrrolidines generated from the biotransformation of benzoic acid with Ralstonia eutropha B9.
Resumo:
Solvent-free desymmetrisation of a meso-dialdehyde with chiral alcohols, led to preparation of 4-silyloxy-6-alkyloxytetrahydro-2H-pyran-2-one derivatives with a 96% de. This methodology, which yields the corresponding methyl nor-mevaldates with 99% ee, has been applied to the enantioselective synthesis of the (-)-(R) and (+)-(S) nor-mevalonic acid lactones.
Resumo:
The components of the pheromone blend of Mayetiola destructor, Drosophila mulleri, and Contarinia pisi were synthesized in high enantiomeric excess (99% ee) from a common enantiopure dianion prepared from an enantiopure hydroxytelluride. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The total synthesis of (-)-Blastmycinolactol, (+)-Blastmycinone, (-)-NFX-2, and (+)-Antimycinone was accomplished in few steps in high yields and ee, starting from enantiomerically enriched (S)-Z-vinylic hydroxytellurides. (C) 2010 Published by Elsevier Ltd.