163 resultados para EGFP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

F-actin remodelling is essential for a wide variety of cell processes. It is important in exocytosis, where F-actin coats fusing exocytic granules. The purpose of these F-actin coats is unknown. They may be important in stabilizing the fused granules, they may play a contractile role and promote expulsion of granule content and finally may be important in endocytosis. To elucidate these functions of F-actin remodelling requires a reliable method to visualize F-actin dynamics in living cells. The recent development of Lifeact-EGFP transgenic animals offers such an opportunity. Here, we studied the characteristics of exocytosis in pancreatic acinar cells obtained from the Lifeact-EGFP transgenic mice. We show that the time-course of agonist-evoked exocytic events and the kinetics of each single exocytic event are the same for wild type and Lifeact-EGFP transgenic animals. We conclude that Lifeact-EGFP animals are a good model to study of exocytosis and reveal that F-actin coating is dependent on the de novo synthesis of F-actin and that development of actin polymerization occurs simultaneously in all regions of the granule. Our insights using the Lifeact-EGFP mice demonstrate that F-actin coating occurs after granule fusion and is a granule-wide event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The p53 protein mediated anti-tumor strategy is limited due to the lack of suitable delivery agent with insignificant immunogenic response, serum compatibility, and early and easy detection of the transfected cell population. To overcome these problems, we generated a p53-EGFP-C3 fusion construct which expressed easily detectable green fluorescence protein (GFP) and allowed an estimation of p53 mediated anti-tumor activity. A mixture of cationic cholesterol gemini (Choi-5L) with natural lipid, DOPE (molar ratio 1:4), acronymed as Chol-5LD, formed a nano-liposome as characterized by various physical methods. The prepared clone was evaluated for the expression of GFP and functional p53 in HeLa and two additional cell lines with varied p53 status namely, H1299 (p53(-/-)) and HEK293T (p53(+/+)). Transfected cells were screened using RT-PCR, Western blotting, FACS analysis, MTT, Trypan blue assay and visualized under a fluorescence microscope. The p53-EGFP-C3 fusion protein induced apoptosis in cancer cells as evident from DNA fragmentation, cell cycle analysis, Annexin-V staining and PARP cleavage assays. The transfection and apoptosis induction efficiency of Chol-5LD was significantly higher than commercial reagents Lipofectamine2000 and Effectene irrespective of the cell lines examined. Further it significantly decreases the xenograft tumor volume in nude mice tumors via apoptosis as observed in H&E staining. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A split-EGFP based bimolecular fluorescence complementation (BiFC) assay has been used to detect interactions between the Saccharomyces cerevisiae cytoskeletal scaffolding protein Iqg1p and three targets: myosin essential light chain (Mlc1p), calmodulin (Cmd1p) and the small GTPase Cdc42p. The format of the BiFC assay used ensures that the proteins are expressed at wild type levels thereby avoiding artefacts due to overexpression. This is the first direct in vivo detection of these interactions; in each case, the complex is localised to discrete regions of the yeast cytoplasm. The labelling with EGFP fragments results in changes in growth kinetics, cell size and budding frequency. This is partly due to the reassembled EGFP locking the complexes into essentially permanent interactions. The consequences of this for Iqg1p interactions and BiFC assays in general are discussed. (c) 2008 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A split-EGFP bimolecular fluorescence complementation assay was used to visualise and locate three interacting pairs of proteins from the GAL genetic switch of the budding yeast, Saccharomyces cerevisiae. Both the Gal4p-Gal80p and Gal80p-Gal3p pairs were found to be located in the nucleus under inducing conditions. However, the Gal80p-Gal1p complex was located throughout the cell. These results support recent work establishing an initial interaction between Gal3p and Gal80p occurring in the nucleus. Labelling of all three protein pairs impaired the growth of the yeast strains and resulted in reduced galactokinase activity in cell extracts. The most likely cause of this impairment is decreased dissociation rates of the complexes, caused by the essentially irreversible reassembly of the EGFP fragments. This suggests that a fully functional GAL genetic switch requires dynamic interactions between the protein components. These results also highlight the need for caution in the interpretation of in vivo split-EGFP experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene therapy is based on the transfer of exogenous genetic material into cells or tissues in order to correct, supplement or silencing a particular gene. To achieve this goal, efficient vehicles, viral or non-viral, should be developed. The aim of this work was to produce and evaluate a nanoemulsion system as a possible carrier for no-viral gene therapy able to load a plasmid model (pIRES2-EGFP). The nanoemulsion was produced by the sonication method, after been choose in a pseudo-ternary phase diagram build with 5 % of Captex 355®, 1.2 % of Tween 80®, 0.8 % of Span 80®, 0.16% of stearylamine and water (to 100 %). Measurements of droplet size, polydispersity index (PI), zeta potential, pH and conductivity, were performed to characterize the system. Results showed droplets smaller than 200 nm (PI < 0.2) and zeta potential > 30 mV. The formulation pH was near to 7.0 and conductivity was that expected to oil in water systems (70 to 90 μS/s) A scale up study, the stability of the system and the best sterilization method were also evaluated. We found that the system may be scaled up considering the time of sonication according to the volume produced, filtration was the best sterilization process and nanoemulsions were stable by 180 days at 4 ºC. Once developed, the complexation efficiency of the plasmid (pDNA) by the system was tested by agarose gel electrophoresis retardation assay.. The complexation efficiency increases when stearylamine was incorporated into aqueous phase (from 46 to 115 ng/μL); regarding a contact period (nanoemulsion / pDNA) of at least 2 hours in an ice bath, for complete lipoplex formation. The nanoemulsion showed low toxicity in MRC-5 cells at the usual transfection concentration, 81.49 % of survival was found. So, it can be concluded that a nanoemulsion in which a plasmid model was loaded was achieved. However, further studies concerning transfectation efficiency should be performed to confirm the system as non-viral gene carrier

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: To investigate mechanisms of fetal-maternal cell interactions in the bovine placenta, we developed a model of transgenic enhanced Green Fluorescent Protein (t-eGFP) expressing bovine embryos produced by nuclear transfer (NT) to assess the distribution of fetal-derived products in the bovine placenta. In addition, we searched for male specific DNA in the blood of females carrying in vitro produced male embryos. Our hypothesis is that the bovine placenta is more permeable to fetal-derived products than described elsewhere. Methodology/Principal Findings: Samples of placentomes, chorion, endometrium, maternal peripheral blood leukocytes and blood plasma were collected during early gestation and processed for nested-PCR for eGFP and testis-specific Y-encoded protein (TSPY), western blotting and immunohistochemistry for eGFP detection, as well as transmission electron microscopy to verify the level of interaction between maternal and fetal cells. TSPY and eGFP DNA were present in the blood of cows carrying male pregnancies at day 60 of pregnancy. Protein and mRNA of eGFP were observed in the trophoblast and uterine tissues. In the placentomes, the protein expression was weak in the syncytial regions, but intense in neighboring cells on both sides of the fetal-maternal interface. Ultrastructurally, our samples from t-eGFP expressing NT pregnancies showed to be normal, such as the presence of interdigitating structures between fetal and maternal cells. In addition, channels-like structures were present in the trophoblast cells. Conclusions/Significance: Data suggested that there is a delivery of fetal contents to the maternal system on both systemic and local levels that involved nuclear acids and proteins. It not clear the mechanisms involved in the transfer of fetal-derived molecules to the maternal system. This delivery may occur through nonclassical protein secretion; throughout transtrophoblastic-like channels and/or by apoptotic processes previously described. In conclusion, the bovine synepitheliochorial placenta displays an intimate fetal-maternal interaction, similar to other placental types for instance human and mouse. © 2013 Pereira et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The architectural transcription factor HMGA2 is abundantly expressed during embryonic development. In several malignant neoplasias including prostate cancer, high re-expression of HMGA2 is correlated with malignancy and poor prognosis. The let-7 miRNA family is described to regulate HMGA2 negatively. The balance of let-7 and HMGA2 is discussed to play a major role in tumour aetiology. To further analyse the role of HMGA2 in prostate cancer a stable and highly reproducible in vitro model system is precondition. Herein we established a canine CT1258-EGFP-HMGA2 prostate cancer cell line stably overexpressing HMGA2 linked to EGFP and in addition the reference cell line CT1258-EGFP expressing solely EGFP to exclude EGFP-induced effects. Both recombinant cell lines were characterised by fluorescence microscopy, flow cytometry and immunocytochemistry. The proliferative effect of ectopically overexpressed HMGA2 was determined via BrdU assays. Comparative karyotyping of the derived and the initial CT1258 cell lines was performed to analyse chromosome consistency. The impact of the ectopic HMGA2 expression on its regulator let-7a was analysed by quantitative real-time PCR. Fluorescence microscopy and immunocytochemistry detected successful expression of the EGFP-HMGA2 fusion protein exclusively accumulating in the nucleus. Gene expression analyses confirmed HMGA2 overexpression in CT1258-EGFP-HMGA2 in comparison to CT1258-EGFP and native cells. Significantly higher let-7a expression levels were found in CT1258-EGFP-HMGA2 and CT1258-EGFP. The BrdU assays detected an increased proliferation of CT1258-HMGA2-EGFP cells compared to CT1258-EGFP and native CT1258. The cytogenetic analyses of CT1258-EGFP and CT1258-EGFP-HMGA2 resulted in a comparable hyperdiploid karyotype as described for native CT1258 cells. To further investigate the impact of recombinant overexpressed HMGA2 on CT1258 cells, other selected targets described to underlie HMGA2 regulation were screened in addition. The new fluorescent CT1258-EGFP-HMGA2 cell line is a stable tool enabling in vitro and in vivo analyses of the HMGA2-mediated effects on cells and the development and pathogenesis of prostate cancer.