164 resultados para EBSD


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercially Pure Magnesium initially hot rolled and having a basal texture was deformed by Equal Channel Angular Extrusion (ECAE). ECAE was carried out upto 8 passes in a 90° die following routes A and Bc through a processing sequence involving two temperatures, namely 523 and 473 K. Texture and microstructure formed were studied using electron back scatter diffraction (EBSD) technique. In addition to significant reduction in grain size, strong <0002> fiber texture inclined at an angle ~ 45o from the extrusion axis formed in the material. Texture was also analyzed by orientation distribution function (ODF) and compared vis-à-vis shear texture. A significant amount of dynamic recrystallization occurred during ECAE, which apparently did not influence texture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a detailed investigation on the effect of heat treatment on the microstructural characteristics, texture evolution and mechanical properties of Mg-(5.6Ti+2.5B(4)C)(BM) hybrid nanocomposite is presented. Optimised heat treatment parameters, namely, heat treatment temperature and heat treatment time, were first identified through grain size and microhardness measurements. Initially, heat treatment of composites was conducted at temperature range between 100 and 300 degrees C for 1 h. Based on optical microscopic analysis and microhardness measurements, it was evident that significant grain growth and reduction in microhardness occurred for temperatures > 200 degrees C. The cutoff temperature that caused significant grain growth/matrix softening was thus identified. Second, at constant temperature (200 degrees C), the effect of variation of heat treatment time was carried out (ranging between 1 and 5 h) so as to identify the range wherein increase in average grain size and reduction in microhardness occurred. Furthering the study, the effect of optimised heat treatment parameters (200 degrees C, 5 h) on the microstructural texture evolution and hence, on the tensile and compressive properties of the Mg-(5.6Ti+2.5B(4)C)(BM) hybrid nanocomposite was carried out. From electron backscattered diffraction (EBSD) analysis, it was identified that the optimised heat treatment resulted in recrystallisation and residual stress relaxation, as evident from the presence of similar to 87% strain free grains, when compared to that observed in the non-heat treated/as extruded condition (i.e. 2.2 times greater than in the as extruded condition). For the heat treated composite, under both tensile and compressive loads, a significant improvement in fracture strain values (similar to 60% increase) was observed when compared to that of the non-heat treated counterpart, with similar to 20% reduction in yield strength. Based on structure-property correlation, the change in mechanical characteristics is identified to be due to: (1) the presence of less stressed matrix/reinforcement interface due to the relief of residual stresses and (2) texture weakening due to matrix recrystallisation effects, both arising due to heat treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

电解沉积方法制备的纳米晶镍经650℃退火处理后,晶粒发生了长大,在晶内沿特定晶面析出了第二相颗粒,样品的拉伸断口为沿晶断口。利用EDS和EBSD对这种第二相析出物进行的成份分析和结构/取向分析表明:这种第二相颗粒是NiS2颗粒,其晶格取向与基体镍保持一致。NiS2颗粒沿基体镍的(001)面析出导致了晶界生长为台阶状并使晶界弱化。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本工作研究了从单一投影面测量块体晶体材料内部特征面的EBSD方法。首先对样品表面进行SEM观察并采集图像,利用图像分析软件测量各迹线在样品台坐标系的取向。然后进行EBSD扫描获得迹线两侧各晶粒对应的取向,进一步利用坐标变换关系计算出晶粒内部的特征面迹线在晶格坐标中的方向指数。最后将全部测量的迹线的极点标示到反极图中,并与各低指数晶面的大圆位置进行对比,重合度最高的晶面就是特征面最可能的晶体学取向面。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melt-textured YBCO samples processed with added Y2O3 and depleted uranium oxide (DU) contain nano-particles, which have been identified previously as Y2Ba4CuUOx (U-411). This phase has a cubic unit cell, which is clearly distinct from the orthorhombic Y-123 and Y-211 phases within the YBCO system. In samples with a high amount of DU addition (0.8 wt-% DU), U-2411 particles have sizes between 200 nm and several νm, so identification of the Kikuchi patterns of this phase becomes possible. Together with a parallel EDX analysis, the particles embedded in the Y-123 matrix can be identified unambiguously. In this way, a three-phase EBSD scan becomes possible, allowing also the identification of nanometre-sized particles in the sample microstructure. © 2006 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias de la Ingeniería Mecánica con Especialidad en Materiales) UANL, 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wrought magnesium alloys exhibit poor cold formability and the accepted explanation is the shortage of independent slip systems. In order to improve the formability in these alloys, an understanding of the deformation modes is required. In the present work, activation of different slip and twinning systems are investigated in rolled Mg–3Al–1Zn using electron back scattering diffraction. Analysis was performed on deformed surfaces and on metallographically prepared cross-sections following deformation at room temperature. The results reinforce the importance of prismatic slip and c-axis compression double twinning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of grain size on the warm deformation behaviour of a titanium stabilized interstitial free steel was investigated using hot torsion. Tests were performed at temperatures between 765 °C and 850 °C at strain rates between 0.003 s−1 and 1 s−1 for samples with grain sizes of 25 μm, 75 μm and 150 μm. The structures were observed using EBSD analysis and are consistent with those expected for materials dominated by dynamic recovery. Some evidence was found for small amounts of thermally induced migration of pre-existing boundary (bulging) and for the generation of new segments of high angle boundaries by continuous dynamic recrystallization. The early onset of a steady-state flow stress in the finer grained samples is attributed to one or a combination of thermally induced boundary migration and enhanced rates of recovery near subgrain (and grain) boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An interstitial free (IF) steel was severely deformed using accumulative roll bonding (ARB) process and warm rolling. The maximum equivalent strains for ARB and warm rolling were 4.8 and 4.0, respectively. The microstructure and micro-texture were studied using optical microscopy and scanning electron microscopy equipped with electron back scattered diffraction (EBSD). The grain size and misorientation obtained by both methods are in the same range. The microstructure in the ARB samples after 6 cycles is homogeneous, although a grain size gradient is observed at the layers close to the surface. The through thickness texture gradient in the ARB samples is different from the warm rolled samples. While a shear texture (⟨110⟩//rolling plane normal direction (ND)) at the surface and rolling texture at the center region is developed in the ARB  samples, the overall texture is weak. The warm rolled samples display a sharp rolling texture through the thickness with increasing the sharpness toward the center. These differences are attributed to the fact that the central region of ARB strip is comprised of material that was once at the surface. The ARB process  can suppress the formation of shear bands which are conventional at warm rolled IF steels. EBSD study on the sample with 6th cycle of ARB following the annealing at 750 ◦C verified a texture gradient through the thickness of the sheet. The shear orientations at the surface and at the quarter thickness layers can be identified even after annealing. The overall weak texture and existence of shear orientations make ARB processed samples unfavorable for sheet metal forming in compare with warm rolled samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure and crystallographic texture characteristics were studied in a 22Cr-6Ni-3Mo duplex stainless steel subjected to plastic deformation in torsion at a temperature of 1000 °C using a strain rate of 1 s−1. High-resolution EBSD was successfully used for precise phase and substructural characterization of this steel. The austenite/ferrite ratio and phase morphology as well as the crystallographic texture, subgrain size, misorientation angles and misorientation gradients corresponding to each phase were determined over large sample areas. The deformation mechanisms in each phase and the interrelationship between the two are discussed.