998 resultados para Drug Companies


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The discovery of somatic mutations, primarily JAK2V617F and CALR, in classic BCR-ABL1-negative myeloproliferative neoplasms (MPNs) has generated interest in the development of molecularly targeted therapies, whose accurate assessment requires a standardized framework. A working group, comprised of members from European LeukemiaNet (ELN) and International Working Group for MPN Research and Treatment (IWG-MRT), prepared consensus-based recommendations regarding trial design, patient selection and definition of relevant end points. Accordingly, a response able to capture the long-term effect of the drug should be selected as the end point of phase II trials aimed at developing new drugs for MPNs. A time-to-event, such as overall survival, or progression-free survival or both, as co-primary end points, should measure efficacy in phase III studies. New drugs should be tested for preventing disease progression in myelofibrosis patients with early disease in randomized studies, and a time to event, such as progression-free or event-free survival should be the primary end point. Phase III trials aimed at preventing vascular events in polycythemia vera and essential thrombocythemia should be based on a selection of the target population based on new prognostic factors, including JAK2 mutation. In conclusion, we recommended a format for clinical trials in MPNs that facilitates communication between academic investigators, regulatory agencies and drug companies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Could the TPP force Australia to adopt an American-style model of private health? Dr Matthew Rimmer, Professor of intellectual property and innovation law at QUT, explains. There has been much concern that Australian citizens and residents are being ripped off on the price of medicines by multinational pharmaceutical drug companies. And the problem is only likely to be exacerbated by global trade deals — like the Trans-Pacific Partnership. The Trans-Pacific Partnership is a regional agreement under negotiation at the moment, involving a dozen countries across the Pacific Rim, including Australia and the United States. The secret trade agreement covers a score of topics — including such matters as intellectual property, investment, transparency in health procedures, and trade in services. The Trans-Pacific Partnership will have a significant impact upon the health of everyone in the Pacific Rim — particularly their ability to buy affordable medicines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A recent controversy in the United States over drug pricing by Turing Pharmaceuticals AG has raised larger issues in respect of intellectual property, access to medicines, and the Trans-Pacific Partnership (TPP). In August 2015, Turing Pharmaceuticals AG – a private biopharmaceutical company with offices in New York, the United States, and Zug, Switzerland - acquired the exclusive marketing rights to Daraprim in the United States from Impax Laboratories Incorporated. Martin Shkreli, Turing’s Founder and Chief Executive Officer, maintained: “The acquisition of Daraprim and our toxoplasmosis research program are significant steps along Turing’s path of bringing novel medications to patients with serious disorders, some of whom often go undiagnosed and untreated.” He emphasised: “We intend to invest in the development of new drug candidates that we hope will yield an even better clinical profile, and also plan to launch an educational effort to help raise awareness and improve diagnosis for patients with toxoplasmosis.” In September 2015, there was much public controversy over the decision of Martin Shkreli to raise the price of a 62 year old drug, Daraprim, from $US13.50 to $US750 a pill. The drug is particularly useful in respect to the treatment and prevention of malaria, and in the treatment of infections in individuals with HIV/AIDS. Daraprim is listed on the World Health Organization’s (WHO) List of Essential Medicines. In the face of much criticism, Martin Shkreli has said that he will reduce the price of Daraprim. He observed: “We've agreed to lower the price on Daraprim to a point that is more affordable and is able to allow the company to make a profit, but a very small profit.” He maintained: “We think these changes will be welcomed.” However, he has been vague and ambiguous about the nature of the commitment. Notably, the lobby group, Pharmaceutical Research and Manufacturers of America (PhARMA), disassociated itself from the claims of Turing Pharmaceuticals. The group said: “PhRMA members have a long history of drug discovery and innovation that has led to increased longevity and improved lives for millions of patients.” The group noted: “Turing Pharmaceutical is not a member of PhRMA and we do not embrace either their recent actions or the conduct of their CEO.” The biotechnology peak body Biotechnology Industry Organization also sought to distance itself from Turing Pharmaceuticals. A hot topic: United States political debate about access to affordable medicines This controversy over Daraprim is unusual – given the age of drug concerned. Daraprim is not subject to patent protection. Nonetheless, there remains a monopoly in respect of the marketplace. Drug pricing is not an isolated problem. There have been many concerns about drug pricing – particularly in respect of essential medicines for HIV/AIDS, tuberculosis, and malaria. This recent controversy is part of a larger debate about access to affordable medicines. The dispute raises larger issues about healthcare, consumer rights, competition policy, and trade. The Daraprim controversy has provided impetus for law reform in the US. US Presidential Candidate Hillary Clinton commented: “Price gouging like this in this specialty drug market is outrageous.” In response to her comments, the Nasdaq Biotechnology Index fell sharply. Hillary Clinton has announced a prescription drug reform plan to protect consumers and promote innovation – while putting an end to profiteering. On her campaign site, she has emphasised that “affordable healthcare is a basic human right.” Her rival progressive candidate, Bernie Sanders, was also concerned about the price hike. He wrote a letter to Martin Shkreli, complaining about the price increase for the drug Daraprim. Sanders said: “The enormous, overnight price increase for Daraprim is just the latest in a long list of skyrocketing price increases for certain critical medications.” He has pushed for reforms to intellectual property to make medicines affordable. The TPP and intellectual property The Daraprim controversy and political debate raises further issues about the design of the TPP. The dispute highlights the dangers of extending the rights of pharmaceutical drug companies under intellectual property, investor-state dispute settlement, and drug administration. Recently, the civil society group Knowledge Ecology International published a leaked draft of the Intellectual Property Chapter of the TPP. Knowledge Ecology International Director, James Love, was concerned the text revealed that the US “continues to be the most aggressive supporter of expanded intellectual property rights for drug companies.” He was concerned that “the proposals contained in the TPP will harm consumers and in some cases block innovation.” James Love feared: “In countless ways, the Obama Administration has sought to expand and extend drug monopolies and raise drug prices.” He maintained: “The astonishing collection of proposals pandering to big drug companies make more difficult the task of ensuring access to drugs for the treatment of cancer and other diseases and conditions.” Love called for a different approach to intellectual property and trade: “Rather than focusing on more intellectual property rights for drug companies, and a death-inducing spiral of higher prices and access barriers, the trade agreement could seek new norms to expand the funding of medical research and development (R&D) as a public good, an area where the US has an admirable track record, such as the public funding of research at the National Institutes of Health (NIH) and other federal agencies.” In addition, there has been much concern about the Investment Chapter of the TPP. The investor-state dispute settlement regime would enable foreign investors to challenge government policy making, which affected their investments. In the context of healthcare, there is a worry that pharmaceutical drug companies will deploy their investor rights to challenge public health measures – such as, for instance, initiatives to curb drug pricing and profiteering. Such concerns are not merely theoretical. Eli Lilly has brought an investor action against the Canadian Government over the rejection of its drug patents under the investor-state dispute settlement regime of the North American Free Trade Agreement (NAFTA). The Health Annex to the TPP also raises worries that pharmaceutical drug companies will able to object to regulatory procedures in respect of healthcare. It is disappointing that the TPP – in the leaks that we have seen – has only limited recognition of the importance of access to essential medicines. There is a need to ensure that there are proper safeguards to provide access to essential medicines – particularly in respect of HIV/AIDs, malaria, and tuberculosis. Moreover, there must be protection against drug profiteering and price gouging in any trade agreement. There should be strong measures against the abuse of intellectual property rights. The dispute over Turing Pharmaceuticals AG and Daraprim is an important cautionary warning in respect of some of the dangers present in the secret negotiations in respect of the TPP. There is a need to preserve consumer rights, competition policy, and public health in trade negotiations over an agreement covering the Pacific Rim.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neuronaaliset nikotiinireseptorit liittyvät tupakkariippuvuuden lisäksi moniin neurologisiin sairauksiin, kuten Alzheimerin tautiin, skitsofreniaan, masennukseen ja tarkkaavaisuus- ja ylivilkkaushäiriöön. Nikotiinireseptorien stimulaation on tutkimuksissa havaittu parantavan kognitiota. Useat lääkeyritykset tutkivat nikotiinireseptoriagonisteja ja -antagonisteja eri neurologisten sairauksien hoidossa. Ongelmana nikotiinireseptori-agonisteja käytettäessä on reseptorissa tapahtuva desensitisaatio. Tällöin reseptori sulkeutuu, eikä aktivoidu vaikka agonistia olisi tarjolla tai sitoutuneena reseptoriin. Varsinkin alfa7-reseptori desensitoituu hyvin nopeasti agonistialtistuksen seurauksena. Reseptorien desensitoituminen voi kliinisessä käytössä aiheuttaa lääkeaineen tehon menetyksen. Perinteisen agonistin sitoutumiskohdan lisäksi nikotiinireseptorissa sijaitsee myös muita sitoutumiskohtia, joita kutsutaan allosteerisiksi sitoutumispaikoiksi. Tutkimuksissa on havaittu, että eräät allosteerisesti sitoutuvat aineet, kuten PNU-120596, voivat vahvistaa agonistin aikaansaamaa vastetta ja/tai estää reseptorin desensitoitumista. Näitä aineita kutsutaan positiivisiksi allosteerisiksi modulaattoreiksi ja niiden ajatellaan olevan vaihtoehto desensitoitumisen aiheuttamaan tehon menetyksen ongelmaan. Nikotiinireseptorien positiivisten allosteeristen modulaattorien tarkkaa vaikutusta ja sitoutumiskohtaa reseptoriin ei vielä tarkkaan tiedetä. Tutkimuksen aiheena oli karakterisoida positiivisten allosteeristen modulaattoreiden vaikutuksia alfa7-nikotiinireseptoriin. Tutkimuksessa tarkoituksena oli käyttää hyväksi laboratoriossa aiemmin tehtyä havaintoa, jonka mukaan alfa7-nikotiinireseptorin transmembraaniosan aminohappoon tehdyn mutaation L247T seurauksena positiiviset allosteeriset modulaattorit muuttuvat agonisteiksi. Haluttiin selvittää, kuinka agonistin sitoutumiskohtaan kohdennettua mutageneesiä käyttäen tehty mutaatio W149M tai W149F vaikuttavat PNU-120596:n kykyyn toimia agonistina alfa7L247T reseptoriin. Asetyylikoliini toimi konventionaalisen agonistin mallina tutkimuksessa. Tutkimuksen toinen tavoite oli tehdä mutaatio M253Lalfa7-reseptorin transmembraaniosaan. Mutaation on todettu estävän allosteeristen potentiaattoreiden kykyä voimistaa agonistin aikaansaamaa vastetta. Tarkoitus oli tutkia millaisia vaikutuksia M253L-mutaatiolla on allosteerisen potentiaattorin kykyyn toimia agonistina L247T-mutaation sisältävään reseptoriin. Mutatoidun reseptorin mRNA mikroinjektoitiin oosyyttiin ja elektrofysiologian avulla tutkittiin ilmennettyjen reseptorien toimintaa käyttäen kahden elektrodin jännitelukitus -menetelmää. Kaikki suunnitellut mutaatiot saatiin tehtyä onnistuneesti alfa7- ja alfa7L247T-reseptoreihin. Ortosteerisen sitoutumiskohdan mutaatio villin tyypin Į7-reseptorissa vaikutti hyvin voimakkaasti joko asetyylikoliinin sitoutumiseen reseptoriin tai reseptorin toimintaan, sillä asetyylikoliinilla ei reseptorista saatu mitattua vasteita. Myöskään PNU-120596 yksinään ei saanut aikaan vasteita alfa7W149M-reseptorissa. Kaksoismutatoidussa alfa7W149M/L247T-reseptorissa puolestaan havaittiin, että asetyylikoliinin annos-vaste -kuvaaja siirtyi huomattavasti enemmän oikealle kuin PNU-120596:n, kun verrattiin annos-vaste –kuvaajia alfa7L247T ja alfa7W149M/L247T–reseptoreiden välillä. Transmembraaniosan mutaatio M253L ei vaikuttanut PNU-120596:n kykyyn toimia agonistina alfa7L247T-reseptoriin, eikä sillä ollut vaikutusta asetyylikoliinin annosvaste-kuvaajiin. Tutkimus tukee aiempia havaintoja siitä, että positiivisten allosteeristen modulaattoreiden sitoutumiskohta nikotiinireseptorissa sijaitsisi transmembraaniosassa. M253L-mutaation osalta tulokset ovat hieman ristiriidassa aiempien tulosten kanssa. L247T-mutaatio vaikuttaa hyvin voimakkaasti nikotiinireseptorin toimintaan sekä sijaitsee aminohapon M253 läheisyydessä. On mahdollista, että se peittää M253L-mutaation vaikutuksen. Toisaalta voi olla, että M253 on aminohappo, joka vaikuttaa vain reseptorivasteiden voimistumiseen eikä allosteeristen potentiaattoreiden sitoutumiseen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The medicalisation of life problems has been occurring for well over a century and has increased over the past 30 years, with the engines of medicalisation shifting to biotechnology, managed care, and consumers. This paper examines one strand of medicalisation during the last century: direct-to-consumer advertising (DTCA) of pharmaceuticals. In particular, it examines the roles that physicians and the Food and Drug Administration (FDA) have played in regulating DTCA in the US. Two advertising exemplars, the late 19 century Lydia E. Pinkham's Vegetable Compound (for 'women's complaints') and contemporary Levitra (for erectile dysfunction) are used to examine the parallels between the patent medicine era and the DTCA era. DTCA re-establishes the direct and independent relationship between drug companies and consumers that existed in the late 19 century, encouraging self-diagnosis and requests for specific drugs. The extravagant claims of Lydia Pinkham's day are constrained by laws, but modern-day advertising is more subtle and sophisticated. DTCA has facilitated the impact of the pharmaceutical industry and consumers in becoming more important forces in medicalisation. © 2008 The Authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this research is to analyze the extension of changes in technological strategies of a group of Brazilian pharmaceutical companies, which we believe were induced by transformations in the institutional environment during the 1990s. Major institutional changes, such as the enacting of laws that recognized drug patents rights and fostered generic drugs market, have strengthened the market insertion and competitive position of these companies, what would enable an increase in research and development efforts in Brazil. In addition to the literature on technology strategy and drug industry, this study was based on interviews with six Brazilian pharmaceutical companies, all of which were ranked among the top national companies in the industry and have been considered in previous studies particularly active in the process of changing technological strategies. This research confirmed a significant intensification of technology efforts carried out by Brazilian drug companies. Nevertheless, the R&D intensity is still far below the global pattern and innovative impacts are slight.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chapter 1 While targeting kinases in oncology research has been explored extensively, targeting protein phosphatases is currently in its infancy. However, a number of pharmaceutical companies are currently looking to expand their research efforts in this area. PP2A has been shown to down-regulate ERK5, a mitogen-activated protein kinase (MAPK) that has been shown to be important in driving the invasive phenotype of prostate cancer. Fostriecin and its related structural analogues PD 113,270 and 113,271 have been shown to inhibit a mitotic entry checkpoint in cell growth through the potent and selective inhibition of protein phosphatases PP1, PP2A, and PP4 (IC50 of 45 μM, 1.5 nM, and 3 nM respectively). Fostriecin is one of the most selective protein phosphatase inhibitors disclosed to date with a 104 fold selectivity for PP2A/PP4 versus PP1. Unfortunately, fostriecin and its analogues are very unstable, and this instability has effectively prevented them from being used as effective therapeutic leads. The microcystins and nodularins on the other hand, exhibit significant inhibitory activity against PP1 and PP2A (IC50 = 26 pM and 1.8 nM respectively), but their high toxicity has prevented any therapeutic application. Truncation of the ADDA chain from these polypeptides completely attenuates PP inhibitory activity. Simpler analogues incorporating the N-acylated ADDA chain and D-Ala retain moderate activity against PP1 and PP2A (IC50 = 1.0 μM and 0.17 μM respectively). The generation of a new series of fostriecin analogues to further expand its structure-activity relationship is envisaged with a view to creating new more stable PP2A inhibitors. It was hoped that by incorporating some of the more stable structural features of ADDA into fostriecin that stability and activity could be reconciled. With that in mind a series of PP2A inhibitors were synthesised and biologically evaluated. Chapter 2 GPCRs are an important area of research and are the targets of a quarter of the drugs on the market (2005). As a result, GPCRs continue to be at the forefront of research in both small and large drug companies. However one of the difficulties in studying this diverse class of membrane proteins is their tendency to denature in aqueous solution. As a result there is a pressing need to develop new detergents to solubilise, stabilise and crystallise GPCRs in their native form for further study. Cholesterol analogues have been shown to be important for stabilising membrane proteins and preventing their thermal inactivation. In addition the β2-adrenergic receptor, a GPCR membrane protein, has been crystallised in the active state with two cholesterol molecules bound between the I, II, III and IV helices of the protein. This appears to represent a distinct cholesterol binding pocket on the membrane protein that is speculated to be conserved across up to 44% of the rhodopsin class of GPCRs. CHOBIMALT is a cholesterol-based detergent that has been shown to exhibit promising GPCR-stabilising properties. When benchmarked against other cholesterol based detergents it was found to be superior to all others tested except for cholesteryl hemisuccinate.1 CHOBIMALT has an aggregation number of roughly 200 and forms 210 ± 30 kDa micelles, which are significantly larger than those of most detergents used for biological systems which is likely due to the packing constraints associated with CHOBMALT’s large polar headgroup.2 As a result, CHOBIMALT is used mostly as an additive to other commercially available detergents in order to decrease micelle size. A branched dimaltoside motif is common in recently synthesised detergents by Chae and co-workers. These detergents have shown promising detergent properties, for example the maltose neopentyl glycol (MNG) detergent synthesised by Chae. This branched dimaltoside detergent was shown to be able to solubilise and stabilise the very labile light harvesting complex I (LHI) from Rhodopsin capsulatus in its active form for 20 days with little loss of protein conformation.3 A cholesterol-based detergent was envisaged that combines the cholesterol framework of CHOBIMALT but replaces its linear tetrasaccharide with a branched dimaltoside. This detergent would then be investigated to assess its ability to solubilise, stabilise and crystallise GPCR proteins. This cholesterol-based detergent (shown below) was eventually synthesised in 9 linear steps from cholesterol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single nucleotide polymorphisms (SNPs) are unique genetic differences between individuals that contribute in significant ways to the determination of human variation including physical characteristics like height and appearance as well as less obvious traits such as personality, behaviour and disease susceptibility. SNPs can also significantly influence responses to pharmacotherapy and whether drugs will produce adverse reactions. The development of new drugs can be made far cheaper and more rapid by selecting participants in drug trials based on their genetically determined response to drugs. Technology that can rapidly and inexpensively genotype thousands of samples for thousands of SNPs at a time is therefore in high demand. With the completion of the human genome project, about 12 million true SNPs have been identified to date. However, most have not yet been associated with disease susceptibility or drug response. Testing for the appropriate drug response SNPs in a patient requiring treatment would enable individualised therapy with the right drug and dose administered correctly the first time. Many pharmaceutical companies are also interested in identifying SNPs associated with polygenic traits so novel therapeutic targets can be discovered. This review focuses on technologies that can be used for genotyping known SNPs as well as for the discovery of novel SNPs associated with drug response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The maturing of the biotechnology industry and a focus on productivity has seen a shift from discovery science to small-scale bench-top research to higher productivity, large scale production. Health companies are aggressively expanding their biopharmaceutical interests, an expansion which is facilitated by biochemical and bioprocess engineering. An area of continuous growth is vaccines. Vaccination will be a key intervention in the case of an influenza pandemic. The global manufacturing capacity for fast turn around vaccines is currently woefully inadequate at around 300 million shots. As the prevention of epidemics requires > 80 % vaccination, in theory the world should currently be aiming for the ability to produce around 5.3 billion vaccines. Presented is a production method for the creation of a fast turn around DNA vaccine. A DNA vaccine could have a production time scale of as little as two weeks. This process has been harnessed into a pilot scale production system for the creation of a pre-clinical grade malaria vaccine in a collaborative project with the Coppel Lab, Department of Microbiology, Monash University. In particular, improvements to the fermentation, chromatography and delivery stages will be discussed. Consideration will then be given as to how the fermentation stage affects the mid and downstream processing stages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is being realized that the traditional closed-door and market driven approaches for drug discovery may not be the best suited model for the diseases of the developing world such as tuberculosis and malaria, because most patients suffering from these diseases have poor paying capacity. To ensure that new drugs are created for patients suffering from these diseases, it is necessary to formulate an alternate paradigm of drug discovery process. The current model constrained by limitations for collaboration and for sharing of resources with confidentiality hampers the opportunities for bringing expertise from diverse fields. These limitations hinder the possibilities of lowering the cost of drug discovery. The Open Source Drug Discovery project initiated by Council of Scientific and Industrial Research, India has adopted an open source model to power wide participation across geographical borders. Open Source Drug Discovery emphasizes integrative science through collaboration, open-sharing, taking up multi-faceted approaches and accruing benefits from advances on different fronts of new drug discovery. Because the open source model is based on community participation, it has the potential to self-sustain continuous development by generating a storehouse of alternatives towards continued pursuit for new drug discovery. Since the inventions are community generated, the new chemical entities developed by Open Source Drug Discovery will be taken up for clinical trial in a non-exclusive manner by participation of multiple companies with majority funding from Open Source Drug Discovery. This will ensure availability of drugs through a lower cost community driven drug discovery process for diseases afflicting people with poor paying capacity. Hopefully what LINUX the World Wide Web have done for the information technology, Open Source Drug Discovery will do for drug discovery. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many promising therapeutic agents are limited by their inability to reach the systemic circulation, due to the excellent barrier properties of biological membranes, such as the stratum corneum (SC) of the skin or the sclera/cornea of the eye and others. The outermost layer of the skin, the SC, is the principal barrier to topically-applied medications. The intact SC thus provides the main barrier to exogenous substances, including drugs. Only drugs with very specific physicochemical properties (molecular weight <500 Da, adequate lipophilicity, and low melting point) can be successfully administered transdermally. Transdermal delivery of hydrophilic drugs and macromolecular agents of interest, including peptides, DNA, and small interfering RNA is problematic. Therefore, facilitation of drug penetration through the SC may involve by-pass or reversible disruption of SC molecular architecture. Microneedles (MNs), when used to puncture skin, will by-pass the SC and create transient aqueous transport pathways of micron dimensions and enhance the transdermal permeability. These micropores are orders of magnitude larger than molecular dimensions, and, therefore, should readily permit the transport of hydrophilic macromolecules. Various strategies have been employed by many research groups and pharmaceutical companies worldwide, for the fabrication of MNs. This review details various types of MNs, fabrication methods and, importantly, investigations of clinical safety of MN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In situ forming (ISF) drug delivery implants have gained tremendous levels of interest over the last few decades. This is due to their wide range of biomedical applications such as in tissue engineering, cell encapsulation, microfluidics, bioengineering and drug delivery. Drug delivery implants forming upon injection has shown a range of advantages which include localized drug delivery, easy and less invasive application, sustained drug action, ability to tailor drug delivery, reduction in side effects associated with systemic delivery and also improved patient compliance and comfort. Different factors such as temperature, pH, ions, and exchange of solvents are involved in in situ implant formation. This review especially focuses on ISF implants that are formed through solvent induced phase inversion (SPI) technique. The article critically reviews and compares a wide range of polymers, solvents, and co-solvents that have been used in SPI implant preparation for control release of a range of drug molecules. Major drawback of SPI systems has been their high burst release. In this regard, the article exhaustively discusses factors that affect the burst release and different modification strategies that has been utilised to reduce the burst effect from these implants. Performance and controversial issues associated with the use of different biocompatible solvents in SPI systems is also discussed. Biodegradation, formulation stability, methods of characterisation and sterilisation techniques of SPI systems is comprehensively reviewed. Furthermore, the review also examines current SPI-based marketed products, their therapeutic application and associated clinical data. It also exemplifies the interest of multi-billion dollar pharma companies worldwide for further developments of SPI systems to a range of therapeutic applications. The authors believe that this will be the first review article that extensively investigate and discusses studies done to date on SPI systems. In so doing, this article will undoubtedly serve as an enlightening tool for the scientists working in the concerned area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Transdermal drug delivery is themovement of drugs across the skin for absorption into the systemic circulation. Transfer of the drug can occur via passive or active means; passive trans- dermal products donot disrupt the stratumcorneumto facilitate deliverywhereas active technologies do. Due to the very specific physicochemical properties necessary for successful passive transdermal drug delivery, this sector of the pharmaceutical industry is relatively small. There are many well-documented benefits of this delivery route however, and as a result there is great interest in increasing the number of therapeutic substances that can be delivered transdermally. Areas Covered: This review discusses the various transdermal products that are currently/have been marketed, and the paths that led to their success, or lack of. Both passive and active transdermal technologies are considered with the advantages and limitations of each high- lighted. In addition to marketed products, technologies that are in the investigative stages by various pharmaceutical companies are reviewed. Expert Opinion: Passive transdermal drug delivery has made limited progress in recent years, however with the ongoing intense research into active technologies, there is great potential for growth within the transdermal delivery market. A number of active technologies have already been translated into marketed products, with other platforms including microneedles, rapidly progressing towards commercialisation.