993 resultados para Distribution feeders


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to dynamically reduce voltage unbalance along a low voltage distribution feeder, a smart residential load transfer system is discussed. In this scheme, residential loads can be transferred from one phase to another to minimize the voltage unbalance along the feeder. Each house is supplied through a static transfer switch and a controller. The master controller, installed at the transformer, observes the power consumption in each house and will determine which house(s) should be transferred from an initially connected phase to another in order to keep the voltage unbalance minimum. The performance of the smart load transfer scheme is demonstrated by simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a dedicated algorithm for lation of single line-to-ground faults in distribution systems. The proposed algorithm uses voltage and current phasors measured at the substation level, voltage magnitudes measured at some buses of the feeder, a database containing electrical, operational and topological parameters of the distribution networks, and fault simulation. Voltage measurements can be obtained using power quality devices already installed on the feeders or using voltage measurement devices dedicated for fault location. Using the proposed algorithm, likely faulted points that are located on feeder laterals geographically far from the actual faulted point are excluded from the results. Assessment of the algorithm efficiency was carried out using a 238 buses real-life distribution feeder. The results show that the proposed algorithm is robust for performing fast and efficient fault location for sustained single line-to-ground faults requiring less than 5% of the feeder buses to be covered by voltage measurement devices. © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a new approach for optimal phasor measurement units placement for fault location on electric power distribution systems using Greedy Randomized Adaptive Search Procedure metaheuristic and Monte Carlo simulation. The optimized placement model herein proposed is a general methodology that can be used to place devices aiming to record the voltage sag magnitudes for any fault location algorithm that uses voltage information measured at a limited set of nodes along the feeder. An overhead, three-phase, three-wire, 13.8 kV, 134-node, real-life feeder model is used to evaluate the algorithm. Tests show that the results of the fault location methodology were improved thanks to the new optimized allocation of the meters pinpointed using this methodology. © 2011 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The potential of distributed reactive power control to improve the voltage profile of radial distribution feeders has been reported in literature by few authors. However, the multiple inverters injecting or absorbing reactive power across a distribution feeder may introduce control interactions and/or voltage instability. Such controller interactions can be alleviated if the inverters are allowed to operate on voltage droop. First, the paper demonstrates that a linear shallow droop line can maintain the steady state voltage profile close to reference, up to a certain level of loading. Then, impacts of the shallow droop line control on line losses and line power factors are examined. Finally, a piecewise linear droop line which can achieve reduced line losses and close to unity power factor at the feeder source is proposed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Low voltage distribution feeders with large numbers of single phase residential loads experience severe current unbalance that often causes voltage unbalance problems. The addition of intermittent generation and new loads in the form of roof top photovoltaic generation and electric vehicles makes these problems even more acute. In this paper, an intelligent dynamic residential load transfer scheme is proposed. Residential loads can be transferred from one phase to another phase to minimize the voltage unbalance along the feeder. Each house is supplied through a static transfer switch with three-phase input and single-phase output connection. The main controller, installed at the transformer will observe the power consumption in each load and determine which house(s) should be transferred from one phase to another in order to keep the voltage unbalance in the feeder at a minimum. The efficacy of the proposed load transfer scheme is verified through MATLAB and PSCAD/EMTDC simulations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Large penetration of rooftop PVs has resulted in unacceptable voltage profile in many residential distribution feeders. Limiting real power injection from PVs to alleviate over voltage problem is not feasible due to loss of green power and hence corresponding revenue loss. Reactive capability of the PV inverter can be a solution to address over voltage and voltage dip problems to some extent. This paper proposes an algorithm to utilize reactive capability of PV inverters and investigate their effectiveness for voltage improvement based on R/X ratio of the feeder. The length and loading level of the feeder for a particular R/X ratio to have acceptable voltage profile is also investigated. This can be useful for suburban design and residential distribution planning. Furthermore, coordination among different PVs using residential smart meters via a substation based controller is also proposed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a multi-class support vector machine (SVMs) approach for locating and diagnosing faults in electric power distribution feeders with the penetration of Distributed Generations (DGs). The proposed approach is based on the three phase voltage and current measurements which are available at all the sources i.e. substation and at the connection points of DG. To illustrate the proposed methodology, a practical distribution feeder emanating from 132/11kV-grid substation in India with loads and suitable number of DGs at different locations is considered. To show the effectiveness of the proposed methodology, practical situations in distribution systems (DS) such as all types of faults with a wide range of varying fault locations, source short circuit (SSC) levels and fault impedances are considered for studies. The proposed fault location scheme is capable of accurately identify the fault type, location of faulted feeder section and the fault impedance. The results demonstrate the feasibility of applying the proposed method in practical in smart grid distribution automation (DA) for fault diagnosis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Optimised placement of control and protective devices in distribution networks allows for a better operation and improvement of the reliability indices of the system. Control devices (used to reconfigure the feeders) are placed in distribution networks to obtain an optimal operation strategy to facilitate power supply restoration in the case of a contingency. Protective devices (used to isolate faults) are placed in distribution systems to improve the reliability and continuity of the power supply, significantly reducing the impacts that a fault can have in terms of customer outages, and the time needed for fault location and system restoration. This paper presents a novel technique to optimally place both control and protective devices in the same optimisation process on radial distribution feeders. The problem is modelled through mixed integer non-linear programming (MINLP) with real and binary variables. The reactive tabu search algorithm (RTS) is proposed to solve this problem. Results and optimised strategies for placing control and protective devices considering a practical feeder are presented. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The neutral wire in most existing power flow and fault analysis software is usually merged into phase wires using Kron's reduction method. In some applications, such as fault analysis, fault location, power quality studies, safety analysis, loss analysis etc., knowledge of the neutral wire and ground currents and voltages could be of particular interest. A general short-circuit analysis algorithm for three-phase four-wire distribution networks, based on the hybrid compensation method, is presented. In this novel use of the technique, the neutral wire and assumed ground conductor are explicitly represented. A generalised fault analysis method is applied to the distribution network for conditions with and without embedded generation. Results obtained from several case studies on medium- and low-voltage test networks with unbalanced loads, for isolated and multi-grounded neutral scenarios, are presented and discussed. Simulation results show the effects of neutrals and system grounding on the operation of the distribution feeders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In some applications like fault analysis, fault location, power quality studies, safety analysis, loss analysis, etc., knowing the neutral wire and ground currents and voltages could be of particular interest. In order to investigate effects of neutrals and system grounding on the operation of the distribution feeders with faults, in this research a hybrid short circuit algorithm is generalized. In this novel use of the technique, the neutral wire and assumed ground conductor are explicitly represented. Results obtained from several case studies using IEEE 34-node test network are presented and discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Network reconfiguration is an important tool to optimize the operating conditions of a distribution system. This is accomplished modifying the network structure of distribution feeders by changing the open/close status of sectionalizing switches. This not only reduces the power losses, but also relieves the overloading of the network components. Network reconfiguration belongs to a complex family of problems because of their combinatorial nature and multiple constraints. This paper proposes a solution to this problem, using a specialized evolutionary algorithm, with a novel codification, and a brand new way of implement the genetic operators considering the problem characteristics. The algorithm is presented and tested in a real distribution system, showing excellent results and computational efficiency. © 2007 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a distribution feeder simulation using VHDL-AMS, considering the standard IEEE 13 node test feeder admitted as an example. In an electronic spreadsheet all calculations are performed in order to develop the modeling in VHDL-AMS. The simulation results are compared in relation to the results from the well knowing MatLab/Simulink environment, in order to verify the feasibility of the VHDL-AMS modeling for a standard electrical distribution feeder, using the software SystemVision™. This paper aims to present the first major developments for a future Real-Time Digital Simulator applied to Electrical Power Distribution Systems. © 2012 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposes an evolutionary computing strategy to solve the problem of fault indicator (FI) placement in primary distribution feeders. More specifically, a genetic algorithm (GA) is employed to search for an efficient configuration of FIs, located at the best positions on the main feeder of a real-life distribution system. Thus, the problem is modeled as one of optimization, aimed at improving the distribution reliability indices, while, at the same time, finding the least expensive solution. Based on actual data, the results confirm the efficiency of the GA approach to the FI placement problem.