1000 resultados para Distribution Affine
Resumo:
Imagery registration is a fundamental step, which greatly affects later processes in image mosaic, multi-spectral image fusion, digital surface modelling, etc., where the final solution needs blending of pixel information from more than one images. It is highly desired to find a way to identify registration regions among input stereo image pairs with high accuracy, particularly in remote sensing applications in which ground control points (GCPs) are not always available, such as in selecting a landing zone on an outer space planet. In this paper, a framework for localization in image registration is developed. It strengthened the local registration accuracy from two aspects: less reprojection error and better feature point distribution. Affine scale-invariant feature transform (ASIFT) was used for acquiring feature points and correspondences on the input images. Then, a homography matrix was estimated as the transformation model by an improved random sample consensus (IM-RANSAC) algorithm. In order to identify a registration region with a better spatial distribution of feature points, the Euclidean distance between the feature points is applied (named the S criterion). Finally, the parameters of the homography matrix were optimized by the Levenberg–Marquardt (LM) algorithm with selective feature points from the chosen registration region. In the experiment section, the Chang’E-2 satellite remote sensing imagery was used for evaluating the performance of the proposed method. The experiment result demonstrates that the proposed method can automatically locate a specific region with high registration accuracy between input images by achieving lower root mean square error (RMSE) and better distribution of feature points.
Resumo:
2000 Mathematics Subject Classification: 49J15, 49J30, 53B50.
Resumo:
The SB distributional model of Johnson's 1949 paper was introduced by a transformation to normality, that is, z ~ N(0, 1), consisting of a linear scaling to the range (0, 1), a logit transformation, and an affine transformation, z = γ + δu. The model, in its original parameterization, has often been used in forest diameter distribution modelling. In this paper, we define the SB distribution in terms of the inverse transformation from normality, including an initial linear scaling transformation, u = γ′ + δ′z (δ′ = 1/δ and γ′ = �γ/δ). The SB model in terms of the new parameterization is derived, and maximum likelihood estimation schema are presented for both model parameterizations. The statistical properties of the two alternative parameterizations are compared empirically on 20 data sets of diameter distributions of Changbai larch (Larix olgensis Henry). The new parameterization is shown to be statistically better than Johnson's original parameterization for the data sets considered here.
Resumo:
A novel test of spatial independence of the distribution of crystals or phases in rocks based on compositional statistics is introduced. It improves and generalizes the common joins-count statistics known from map analysis in geographic information systems. Assigning phases independently to objects in RD is modelled by a single-trial multinomial random function Z(x), where the probabilities of phases add to one and are explicitly modelled as compositions in the K-part simplex SK. Thus, apparent inconsistencies of the tests based on the conventional joins{count statistics and their possibly contradictory interpretations are avoided. In practical applications we assume that the probabilities of phases do not depend on the location but are identical everywhere in the domain of de nition. Thus, the model involves the sum of r independent identical multinomial distributed 1-trial random variables which is an r-trial multinomial distributed random variable. The probabilities of the distribution of the r counts can be considered as a composition in the Q-part simplex SQ. They span the so called Hardy-Weinberg manifold H that is proved to be a K-1-affine subspace of SQ. This is a generalisation of the well-known Hardy-Weinberg law of genetics. If the assignment of phases accounts for some kind of spatial dependence, then the r-trial probabilities do not remain on H. This suggests the use of the Aitchison distance between observed probabilities to H to test dependence. Moreover, when there is a spatial uctuation of the multinomial probabilities, the observed r-trial probabilities move on H. This shift can be used as to check for these uctuations. A practical procedure and an algorithm to perform the test have been developed. Some cases applied to simulated and real data are presented. Key words: Spatial distribution of crystals in rocks, spatial distribution of phases, joins-count statistics, multinomial distribution, Hardy-Weinberg law, Hardy-Weinberg manifold, Aitchison geometry
Resumo:
The translation of an ensemble of model runs into a probability distribution is a common task in model-based prediction. Common methods for such ensemble interpretations proceed as if verification and ensemble were draws from the same underlying distribution, an assumption not viable for most, if any, real world ensembles. An alternative is to consider an ensemble as merely a source of information rather than the possible scenarios of reality. This approach, which looks for maps between ensembles and probabilistic distributions, is investigated and extended. Common methods are revisited, and an improvement to standard kernel dressing, called ‘affine kernel dressing’ (AKD), is introduced. AKD assumes an affine mapping between ensemble and verification, typically not acting on individual ensemble members but on the entire ensemble as a whole, the parameters of this mapping are determined in parallel with the other dressing parameters, including a weight assigned to the unconditioned (climatological) distribution. These amendments to standard kernel dressing, albeit simple, can improve performance significantly and are shown to be appropriate for both overdispersive and underdispersive ensembles, unlike standard kernel dressing which exacerbates over dispersion. Studies are presented using operational numerical weather predictions for two locations and data from the Lorenz63 system, demonstrating both effectiveness given operational constraints and statistical significance given a large sample.
Resumo:
Mistletoes constitute an important food resource for animals in many ecosystems. However, these plants are considered pests in urban areas because of deleterious effects they have on the host trees. Studies in urban areas were mostly focused on listing host species or procedures to control the "pest". In this sense, broader studies including several aspects of mistletoes ecology in urban ecosystems are still missing. We studied the interaction of the mistletoe, Phoradendron affine, with its dispersers and hosts in two urban sites in Uberlandia, Brazil. Phoradendron affine fruits were consumed almost exclusively by Euphonia chlorotica, which was crucial for seed germination. Parasitism was recorded in five hosts, two native (Handroanthus chrysotrichus and Tabebuia roseoalba) and three exotic species (Spathodea campanulata, Ligustrum lucidum and Melia azedarach). Mistletoes were found parasitizing larger host trees, a trend commonly reported for mistletoe-host interaction. Mistletoe seed germination was not affected by the trees species, whether host or non-host, but the radicle of germinated seeds could not penetrate the bark and seedlings invariably died in non-host species. We found a high prevalence of parasitism in our study, in comparison to what previous studies reported for natural areas. The spatial distribution of the hosts and high light incidence on isolated host trees may lead to this high prevalence in urban areas. Rather than eradicated, mistletoes in urban areas should be ecologically managed and their importance for bird species conservation must be considered. More studies to determine which bird species are favoured by mistletoe presence in urban areas will be essential for, this purpose. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
Constructing a 3D surface model from sparse-point data is a nontrivial task. Here, we report an accurate and robust approach for reconstructing a surface model of the proximal femur from sparse-point data and a dense-point distribution model (DPDM). The problem is formulated as a three-stage optimal estimation process. The first stage, affine registration, is to iteratively estimate a scale and a rigid transformation between the mean surface model of the DPDM and the sparse input points. The estimation results of the first stage are used to establish point correspondences for the second stage, statistical instantiation, which stably instantiates a surface model from the DPDM using a statistical approach. This surface model is then fed to the third stage, kernel-based deformation, which further refines the surface model. Handling outliers is achieved by consistently employing the least trimmed squares (LTS) approach with a roughly estimated outlier rate in all three stages. If an optimal value of the outlier rate is preferred, we propose a hypothesis testing procedure to automatically estimate it. We present here our validations using four experiments, which include 1 leave-one-out experiment, 2 experiment on evaluating the present approach for handling pathology, 3 experiment on evaluating the present approach for handling outliers, and 4 experiment on reconstructing surface models of seven dry cadaver femurs using clinically relevant data without noise and with noise added. Our validation results demonstrate the robust performance of the present approach in handling outliers, pathology, and noise. An average 95-percentile error of 1.7-2.3 mm was found when the present approach was used to reconstruct surface models of the cadaver femurs from sparse-point data with noise added.
Resumo:
Let {μ(i)t}t≥0 ( i=1,2 ) be continuous convolution semigroups (c.c.s.) of probability measures on Aff(1) (the affine group on the real line). Suppose that μ(1)1=μ(2)1 . Assume furthermore that {μ(1)t}t≥0 is a Gaussian c.c.s. (in the sense that its generating distribution is a sum of a primitive distribution and a second-order differential operator). Then μ(1)t=μ(2)t for all t≥0 . We end up with a possible application in mathematical finance.
Resumo:
The investigation of the species composition and ecology of diatoms of modern bottom sediments in water bodies of arctic polygonal tundra in three subregions of North Yakutiya has been carried out. As a result, 161 taxons of diatoms were determined; the determinant role of the depth, conductivity, pH of the water, and geographic latitude in their distribution was confirmed, and two complexes of species with respect to the leading abiotic factors were distinguished. The diatoms of the first complex prefer shallow water bodies of high latitudes with neutral and slightly alkaline water and relatively high conductivity. The second complex is confined to the water bodies of lower latitudes with small conductivity, as well as neutral and slightly acidic water.
Resumo:
In the course of the voyages 9a and 9c (1967) and 19 (1970) of the RV "Meteor" samples of plankton and neuston have been taken in the area of the Great Meteor Seamount. The euphausiids of this material have been examined quantitatively as well as qualitatively in order to study the influence of the Great and Small Meteor Seamount on a vertically migrating group of plankton. 20 species could be identified. All stem from the surrounding deep water and belong to the tropical and subtropical fauna. On the plateau of the Great Meteor Seamount no indigenous species have been encountered and also the typical neritic species from the west coast off Africa are lacking. As for the euphausiids no relationships exist between the Great Meteor Seamount and the shelf area of West Africa. The dominant species around the Meteor Seamount were Euphausia brevii, Stylocheiron suhmii, E. hemigibba, S. longicorne and Thysanopoda subaequalis. Using the index of diversity (Simpson) distinct differences in the composition of species could be shown to exist between the plateau area of the Meteor Seamount and the surrounding sea. On the plateau of the Great Meteor Seamount the number of species was only 7, E. brevis and S. suhmii dominated. None of the species occurred in great numbers and none is adapted to the specific environmental conditions of the plateau of the Meteor Seamount. The fauna of the plateau is a depauperate one as compared with that of the surrounding sea. This can be explained by the fact that adult euphausiids require for their existence greater water depths than are found above the plateau of the Meteor Seamount.