908 resultados para Distributed Lag Non-linear Models
Resumo:
Objectives To investigate whether a sudden temperature change between neighboring days has significant impact on mortality. Methods A Poisson generalized linear regression model combined with a distributed lag non-linear models was used to estimate the association of temperature change between neighboring days with mortality in a subtropical Chinese city during 2008–2012. Temperature change was calculated as the current day’s temperature minus the previous day’s temperature. Results A significant effect of temperature change between neighboring days on mortality was observed. Temperature increase was significantly associated with elevated mortality from non-accidental and cardiovascular diseases, while temperature decrease had a protective effect on non-accidental mortality and cardiovascular mortality. Males and people aged 65 years or older appeared to be more vulnerable to the impact of temperature change. Conclusions Temperature increase between neighboring days has a significant adverse impact on mortality. Further health mitigation strategies as a response to climate change should take into account temperature variation between neighboring days.
Resumo:
Background There has been increasing interest in assessing the impacts of temperature on mortality. However, few studies have used a case–crossover design to examine non-linear and distributed lag effects of temperature on mortality. Additionally, little evidence is available on the temperature-mortality relationship in China, or what temperature measure is the best predictor of mortality. Objectives To use a distributed lag non-linear model (DLNM) as a part of case–crossover design. To examine the non-linear and distributed lag effects of temperature on mortality in Tianjin, China. To explore which temperature measure is the best predictor of mortality; Methods: The DLNM was applied to a case¬−crossover design to assess the non-linear and delayed effects of temperatures (maximum, mean and minimum) on deaths (non-accidental, cardiopulmonary, cardiovascular and respiratory). Results A U-shaped relationship was consistently found between temperature and mortality. Cold effects (significantly increased mortality associated with low temperatures) were delayed by 3 days, and persisted for 10 days. Hot effects (significantly increased mortality associated with high temperatures) were acute and lasted for three days, and were followed by mortality displacement for non-accidental, cardiopulmonary, and cardiovascular deaths. Mean temperature was a better predictor of mortality (based on model fit) than maximum or minimum temperature. Conclusions In Tianjin, extreme cold and hot temperatures increased the risk of mortality. Results suggest that the effects of cold last longer than the effects of heat. It is possible to combine the case−crossover design with DLNMs. This allows the case−crossover design to flexibly estimate the non-linear and delayed effects of temperature (or air pollution) whilst controlling for season.
Resumo:
In the last decade, many side channel attacks have been published in academic literature detailing how to efficiently extract secret keys by mounting various attacks, such as differential or correlation power analysis, on cryptosystems. Among the most efficient and widely utilized leakage models involved in these attacks are the Hamming weight and distance models which give a simple, yet effective, approximation of the power consumption for many real-world systems. These leakage models reflect the number of bits switching, which is assumed proportional to the power consumption. However, the actual power consumption changing in the circuits is unlikely to be directly of that form. We, therefore, propose a non-linear leakage model by mapping the existing leakage model via a transform function, by which the changing power consumption is depicted more precisely, hence the attack efficiency can be improved considerably. This has the advantage of utilising a non-linear power model while retaining the simplicity of the Hamming weight or distance models. A modified attack architecture is then suggested to yield the correct key efficiently in practice. Finally, an empirical comparison of the attack results is presented.
Resumo:
We compare a number of models of post War US output growth in terms of the degree and pattern of non-linearity they impart to the conditional mean, where we condition on either the previous period's growth rate, or the previous two periods' growth rates. The conditional means are estimated non-parametrically using a nearest-neighbour technique on data simulated from the models. In this way, we condense the complex, dynamic, responses that may be present in to graphical displays of the implied conditional mean.
Resumo:
In this paper we discuss the current state-of-the-art in estimating, evaluating, and selecting among non-linear forecasting models for economic and financial time series. We review theoretical and empirical issues, including predictive density, interval and point evaluation and model selection, loss functions, data-mining, and aggregation. In addition, we argue that although the evidence in favor of constructing forecasts using non-linear models is rather sparse, there is reason to be optimistic. However, much remains to be done. Finally, we outline a variety of topics for future research, and discuss a number of areas which have received considerable attention in the recent literature, but where many questions remain.
Resumo:
We consider the impact of data revisions on the forecast performance of a SETAR regime-switching model of U.S. output growth. The impact of data uncertainty in real-time forecasting will affect a model's forecast performance via the effect on the model parameter estimates as well as via the forecast being conditioned on data measured with error. We find that benchmark revisions do affect the performance of the non-linear model of the growth rate, and that the performance relative to a linear comparator deteriorates in real-time compared to a pseudo out-of-sample forecasting exercise.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Department of Structural Analysis of the University of Santander has been for a longtime involved in the solution of the country´s practical engineering problems. Some of these have required the use of non-conventional methods of analysis, in order to achieve adequate engineering answers. As an example of the increasing application of non-linear computer codes in the nowadays engineering practice, some cases will be briefly presented. In each case, only the main features of the problem involved and the solution used to solve it will be shown
Resumo:
The health impacts of exposure to ambient temperature have been drawing increasing attention from the environmental health research community, government, society, industries, and the public. Case-crossover and time series models are most commonly used to examine the effects of ambient temperature on mortality. However, some key methodological issues remain to be addressed. For example, few studies have used spatiotemporal models to assess the effects of spatial temperatures on mortality. Few studies have used a case-crossover design to examine the delayed (distributed lag) and non-linear relationship between temperature and mortality. Also, little evidence is available on the effects of temperature changes on mortality, and on differences in heat-related mortality over time. This thesis aimed to address the following research questions: 1. How to combine case-crossover design and distributed lag non-linear models? 2. Is there any significant difference in effect estimates between time series and spatiotemporal models? 3. How to assess the effects of temperature changes between neighbouring days on mortality? 4. Is there any change in temperature effects on mortality over time? To combine the case-crossover design and distributed lag non-linear model, datasets including deaths, and weather conditions (minimum temperature, mean temperature, maximum temperature, and relative humidity), and air pollution were acquired from Tianjin China, for the years 2005 to 2007. I demonstrated how to combine the case-crossover design with a distributed lag non-linear model. This allows the case-crossover design to estimate the non-linear and delayed effects of temperature whilst controlling for seasonality. There was consistent U-shaped relationship between temperature and mortality. Cold effects were delayed by 3 days, and persisted for 10 days. Hot effects were acute and lasted for three days, and were followed by mortality displacement for non-accidental, cardiopulmonary, and cardiovascular deaths. Mean temperature was a better predictor of mortality (based on model fit) than maximum or minimum temperature. It is still unclear whether spatiotemporal models using spatial temperature exposure produce better estimates of mortality risk compared with time series models that use a single site’s temperature or averaged temperature from a network of sites. Daily mortality data were obtained from 163 locations across Brisbane city, Australia from 2000 to 2004. Ordinary kriging was used to interpolate spatial temperatures across the city based on 19 monitoring sites. A spatiotemporal model was used to examine the impact of spatial temperature on mortality. A time series model was used to assess the effects of single site’s temperature, and averaged temperature from 3 monitoring sites on mortality. Squared Pearson scaled residuals were used to check the model fit. The results of this study show that even though spatiotemporal models gave a better model fit than time series models, spatiotemporal and time series models gave similar effect estimates. Time series analyses using temperature recorded from a single monitoring site or average temperature of multiple sites were equally good at estimating the association between temperature and mortality as compared with a spatiotemporal model. A time series Poisson regression model was used to estimate the association between temperature change and mortality in summer in Brisbane, Australia during 1996–2004 and Los Angeles, United States during 1987–2000. Temperature change was calculated by the current day's mean temperature minus the previous day's mean. In Brisbane, a drop of more than 3 �C in temperature between days was associated with relative risks (RRs) of 1.16 (95% confidence interval (CI): 1.02, 1.31) for non-external mortality (NEM), 1.19 (95% CI: 1.00, 1.41) for NEM in females, and 1.44 (95% CI: 1.10, 1.89) for NEM aged 65.74 years. An increase of more than 3 �C was associated with RRs of 1.35 (95% CI: 1.03, 1.77) for cardiovascular mortality and 1.67 (95% CI: 1.15, 2.43) for people aged < 65 years. In Los Angeles, only a drop of more than 3 �C was significantly associated with RRs of 1.13 (95% CI: 1.05, 1.22) for total NEM, 1.25 (95% CI: 1.13, 1.39) for cardiovascular mortality, and 1.25 (95% CI: 1.14, 1.39) for people aged . 75 years. In both cities, there were joint effects of temperature change and mean temperature on NEM. A change in temperature of more than 3 �C, whether positive or negative, has an adverse impact on mortality even after controlling for mean temperature. I examined the variation in the effects of high temperatures on elderly mortality (age . 75 years) by year, city and region for 83 large US cities between 1987 and 2000. High temperature days were defined as two or more consecutive days with temperatures above the 90th percentile for each city during each warm season (May 1 to September 30). The mortality risk for high temperatures was decomposed into: a "main effect" due to high temperatures using a distributed lag non-linear function, and an "added effect" due to consecutive high temperature days. I pooled yearly effects across regions and overall effects at both regional and national levels. The effects of high temperature (both main and added effects) on elderly mortality varied greatly by year, city and region. The years with higher heat-related mortality were often followed by those with relatively lower mortality. Understanding this variability in the effects of high temperatures is important for the development of heat-warning systems. In conclusion, this thesis makes contribution in several aspects. Case-crossover design was combined with distribute lag non-linear model to assess the effects of temperature on mortality in Tianjin. This makes the case-crossover design flexibly estimate the non-linear and delayed effects of temperature. Both extreme cold and high temperatures increased the risk of mortality in Tianjin. Time series model using single site’s temperature or averaged temperature from some sites can be used to examine the effects of temperature on mortality. Temperature change (no matter significant temperature drop or great temperature increase) increases the risk of mortality. The high temperature effect on mortality is highly variable from year to year.
Resumo:
Background Transmission of Plasmodium vivax malaria is dependent on vector availability, biting rates and parasite development. In turn, each of these is influenced by climatic conditions. Correlations have previously been detected between seasonal rainfall, temperature and malaria incidence patterns in various settings. An understanding of seasonal patterns of malaria, and their weather drivers, can provide vital information for control and elimination activities. This research aimed to describe temporal patterns in malaria, rainfall and temperature, and to examine the relationships between these variables within four counties of Yunnan Province, China. Methods Plasmodium vivax malaria surveillance data (1991–2006), and average monthly temperature and rainfall were acquired. Seasonal trend decomposition was used to examine secular trends and seasonal patterns in malaria. Distributed lag non-linear models were used to estimate the weather drivers of malaria seasonality, including the lag periods between weather conditions and malaria incidence. Results There was a declining trend in malaria incidence in all four counties. Increasing temperature resulted in increased malaria risk in all four areas and increasing rainfall resulted in increased malaria risk in one area and decreased malaria risk in one area. The lag times for these associations varied between areas. Conclusions The differences detected between the four counties highlight the need for local understanding of seasonal patterns of malaria and its climatic drivers.
Resumo:
The relationship between temperature and mortality is non-linear and the effect estimates depend on the threshold temperatures selected. However, little is known about whether threshold temperatures differ with age or cause of deaths in the Southern Hemisphere. We conducted polynomial distributed lag non-linear models to assess the threshold temperatures for mortality from all ages (Dall), aged from 15 to 64 (D15-64), 65- 84(D65-84), ≥85 years (D85+), respiratory (RD) and cardiovascular diseases (CVD) in Brisbane, Australia, 1996–2004. We examined both hot and cold thresholds, and the lags of up to 15 days for cold effects and 3 days for hot effects. Results show that for the current day, the cold threshold was 20°C and the hot threshold was 28°C for the groups of Dall, D15-64 and D85+. The cold threshold was higher (23°C) for the group of D65-84 and lower (21°C) for the group of CVD. The hot threshold was higher (29°C) for the group of D65-84 and lower (27°C) for the group of RD. Compared to the current day, for the cold effects of up to 15-day lags, the threshold was lower for the group of D15-64, and the thresholds were higher for the groups of D65-84, D85+, RD and CVD; while for the hot effects of 3-day lags, the threshold was higher for the group of D15-64 and the thresholds were lower for the groups of D65-84 and RD. Temperature thresholds appeared to differ with age and death categories. The elderly and deaths from RD and CVD were more sensitive to temperature stress than the adult group. These findings may have implications in the assessment of temperature-related mortality and development of weather/health warning systems.
Resumo:
It is well known that meteorological conditions influence the comfort and human health. Southern European countries, including Portugal, show the highest mortality rates during winter, but the effects of extreme cold temperatures in Portugal have never been estimated. The objective of this study was the estimation of the effect of extreme cold temperatures on the risk of death in Lisbon and Oporto, aiming the production of scientific evidence for the development of a real-time health warning system. Poisson regression models combined with distributed lag non-linear models were applied to assess the exposure-response relation and lag patterns of the association between minimum temperature and all-causes mortality and between minimum temperature and circulatory and respiratory system diseases mortality from 1992 to 2012, stratified by age, for the period from November to March. The analysis was adjusted for over dispersion and population size, for the confounding effect of influenza epidemics and controlled for long-term trend, seasonality and day of the week. Results showed that the effect of cold temperatures in mortality was not immediate, presenting a 1–2-day delay, reaching maximumincreased risk of death after 6–7 days and lasting up to 20–28 days. The overall effect was generally higher and more persistent in Lisbon than in Oporto, particularly for circulatory and respiratory mortality and for the elderly. Exposure to cold temperatures is an important public health problem for a relevant part of the Portuguese population, in particular in Lisbon.