940 resultados para Dirichlet forms
Resumo:
This thesis presents general methods in non-Gaussian analysis in infinite dimensional spaces. As main applications we study Poisson and compound Poisson spaces. Given a probability measure μ on a co-nuclear space, we develop an abstract theory based on the generalized Appell systems which are bi-orthogonal. We study its properties as well as the generated Gelfand triples. As an example we consider the important case of Poisson measures. The product and Wick calculus are developed on this context. We provide formulas for the change of the generalized Appell system under a transformation of the measure. The L² structure for the Poisson measure, compound Poisson and Gamma measures are elaborated. We exhibit the chaos decomposition using the Fock isomorphism. We obtain the representation of the creation, annihilation operators. We construct two types of differential geometry on the configuration space over a differentiable manifold. These two geometries are related through the Dirichlet forms for Poisson measures as well as for its perturbations. Finally, we construct the internal geometry on the compound configurations space. In particular, the intrinsic gradient, the divergence and the Laplace-Beltrami operator. As a result, we may define the Dirichlet forms which are associated to a diffusion process. Consequently, we obtain the representation of the Lie algebra of vector fields with compact support. All these results extends directly for the marked Poisson spaces.
Resumo:
The present thesis is concerned with certain aspects of differential and pseudodifferential operators on infinite dimensional spaces. We aim to generalize classical operator theoretical concepts of pseudodifferential operators on finite dimensional spaces to the infinite dimensional case. At first we summarize some facts about the canonical Gaussian measures on infinite dimensional Hilbert space riggings. Considering the naturally unitary group actions in $L^2(H_-,gamma)$ given by weighted shifts and multiplication with $e^{iSkp{t}{cdot}_0}$ we obtain an unitary equivalence $F$ between them. In this sense $F$ can be considered as an abstract Fourier transform. We show that $F$ coincides with the Fourier-Wiener transform. Using the Fourier-Wiener transform we define pseudodifferential operators in Weyl- and Kohn-Nirenberg form on our Hilbert space rigging. In the case of this Gaussian measure $gamma$ we discuss several possible Laplacians, at first the Ornstein-Uhlenbeck operator and then pseudo-differential operators with negative definite symbol. In the second case, these operators are generators of $L^2_gamma$-sub-Markovian semi-groups and $L^2_gamma$-Dirichlet-forms. In 1992 Gramsch, Ueberberg and Wagner described a construction of generalized Hörmander classes by commutator methods. Following this concept and the classical finite dimensional description of $Psi_{ro,delta}^0$ ($0leqdeltaleqroleq 1$, $delta< 1$) in the $C^*$-algebra $L(L^2)$ by Beals and Cordes we construct in both cases generalized Hörmander classes, which are $Psi^*$-algebras. These classes act on a scale of Sobolev spaces, generated by our Laplacian. In the case of the Ornstein-Uhlenbeck operator, we prove that a large class of continuous pseudodifferential operators considered by Albeverio and Dalecky in 1998 is contained in our generalized Hörmander class. Furthermore, in the case of a Laplacian with negative definite symbol, we develop a symbolic calculus for our operators. We show some Fredholm-criteria for them and prove that these Fredholm-operators are hypoelliptic. Moreover, in the finite dimensional case, using the Gaussian-measure instead of the Lebesgue-measure the index of these Fredholm operators is still given by Fedosov's formula. Considering an infinite dimensional Heisenberg group rigging we discuss the connection of some representations of the Heisenberg group to pseudo-differential operators on infinite dimensional spaces. We use this connections to calculate the spectrum of pseudodifferential operators and to construct generalized Hörmander classes given by smooth elements which are spectrally invariant in $L^2(H_-,gamma)$. Finally, given a topological space $X$ with Borel measure $mu$, a locally compact group $G$ and a representation $B$ of $G$ in the group of all homeomorphisms of $X$, we construct a Borel measure $mu_s$ on $X$ which is invariant under $B(G)$.
Resumo:
The Rankin convolution type Dirichlet series D-F,D-G(s) of Siegel modular forms F and G of degree two, which was introduced by Kohnen and the second author, is computed numerically for various F and G. In particular, we prove that the series D-F,D-G(s), which shares the same functional equation and analytic behavior with the spinor L-functions of eigenforms of the same weight are not linear combinations of those. In order to conduct these experiments a numerical method to compute the Petersson scalar products of Jacobi Forms is developed and discussed in detail.
Resumo:
In 1984 Jutila [5] obtained a transformation formula for certain exponential sums involving the Fourier coefficients of a holomorphic cusp form for the full modular group SL(2, Z). With the help of the transformation formula he obtained good estimates for the distance between consecutive zeros on the critical line of the Dirichlet series associated with the cusp form and for the order of the Dirichlet series on the critical line, [7]. In this paper we follow Jutila to obtain a transformation formula for exponential sums involving the Fourier coefficients of either holomorphic cusp forms or certain Maass forms for congruence subgroups of SL(2, Z) and prove similar estimates for the corresponding Dirichlet series.
Resumo:
The Dirichlet family owes its privileged status within simplex distributions to easyness of interpretation and good mathematical properties. In particular, we recall fundamental properties for the analysis of compositional data such as closure under amalgamation and subcomposition. From a probabilistic point of view, it is characterised (uniquely) by a variety of independence relationships which makes it indisputably the reference model for expressing the non trivial idea of substantial independence for compositions. Indeed, its well known inadequacy as a general model for compositional data stems from such an independence structure together with the poorness of its parametrisation. In this paper a new class of distributions (called Flexible Dirichlet) capable of handling various dependence structures and containing the Dirichlet as a special case is presented. The new model exhibits a considerably richer parametrisation which, for example, allows to model the means and (part of) the variance-covariance matrix separately. Moreover, such a model preserves some good mathematical properties of the Dirichlet, i.e. closure under amalgamation and subcomposition with new parameters simply related to the parent composition parameters. Furthermore, the joint and conditional distributions of subcompositions and relative totals can be expressed as simple mixtures of two Flexible Dirichlet distributions. The basis generating the Flexible Dirichlet, though keeping compositional invariance, shows a dependence structure which allows various forms of partitional dependence to be contemplated by the model (e.g. non-neutrality, subcompositional dependence and subcompositional non-invariance), independence cases being identified by suitable parameter configurations. In particular, within this model substantial independence among subsets of components of the composition naturally occurs when the subsets have a Dirichlet distribution
Resumo:
Diese Arbeit widmet sich den Darstellungssätzen für symmetrische indefinite (das heißt nicht-halbbeschränkte) Sesquilinearformen und deren Anwendungen. Insbesondere betrachten wir den Fall, dass der zur Form assoziierte Operator keine Spektrallücke um Null besitzt. Desweiteren untersuchen wir die Beziehung zwischen reduzierenden Graphräumen, Lösungen von Operator-Riccati-Gleichungen und der Block-Diagonalisierung für diagonaldominante Block-Operator-Matrizen. Mit Hilfe der Darstellungssätze wird eine entsprechende Beziehung zwischen Operatoren, die zu indefiniten Formen assoziiert sind, und Form-Riccati-Gleichungen erreicht. In diesem Rahmen wird eine explizite Block-Diagonalisierung und eine Spektralzerlegung für den Stokes Operator sowie eine Darstellung für dessen Kern erreicht. Wir wenden die Darstellungssätze auf durch (grad u, h() grad v) gegebene Formen an, wobei Vorzeichen-indefinite Koeffzienten-Matrizen h() zugelassen sind. Als ein Resultat werden selbstadjungierte indefinite Differentialoperatoren div h() grad mit homogenen Dirichlet oder Neumann Randbedingungen konstruiert. Beispiele solcher Art sind Operatoren die in der Modellierung von optischen Metamaterialien auftauchen und links-indefinite Sturm-Liouville Operatoren.
Resumo:
Partnering has been defined in many ways. It can be considered as an individual project mechanism or can be considered as a long term strategy. Alliancing is normally assumed to be a long term business strategy linking together client, contractor and supply chain. Relational contracting goes further than this and brings in the whole philosophy of the value chain and the linking of the interdependent parts within the construction project as a key business objective. This document aims to review existing definitions of these three concepts and present and overview of the current state of-the-art in terms of their use and implementation. The document should be useful for all of those project team members looking to sharpen their understanding of the various concepts and will also provide a platform for debating the current state of the definitions and implementations being used in Main Roads and Public Works Departments.
Resumo:
Curriculum initiatives in Australia emphasise the use of technologies and new media in classrooms. Some English teachers might fear this deployment of technologies because we are not all ‘digital natives’ like our students. If we embrace new media forms such as podcasts, blogs, vodcasts, and digital stories, a whole new world of possibilities open up for literary response and recreative texts, with new audiences and publication spaces. This article encourages English teachers to embrace these new digital forms and how shows we can go about it.
Resumo:
Both clinical practice and clinical research settings can require successive administrations of a memory test, particularly when following the trajectory of suspected memory decline in older adults. However, relatively few verbal episodic memory tests have alternative forms. We set out to create a broad based memory test to allow for the use of an essentially unlimited number of alternative forms. Four tasks for inclusion in such a test were developed. These tasks varied the requirement for recall as opposed to recognition, the need to form an association between unrelated words, and the need to discriminate the most recent list from earlier lists, all of which proved useful. A total of 115 participants completed the battery of tests and were used to show that the test could differentiate between older and younger adults; a sub-sample of 73 participants completed alternative forms of the tests to determine test-retest reliability and the amount of learning to learn.
Resumo:
"By understanding how places have evolved, we are better able to guide development and change in the urban fabric and avoid the incongruity created by so much of the modern environment" (MacCormac, R (1996), An anatomy of London, Built Environment, Dec 1996 This paper proposes a theory on the relevance of mapping the evolutionary aspects of historical urban form in order to develop a measure of evaluating architectural elements within urban forms, through to deriving parameters for new buildings. By adopting Conzen's identification of the tripartite division of urban form; the consonance inurban form of a particular palce resides in the elements and measurable values tha makeup the fine grain aggregates of urban form. The paper will demonstrate throughthe case study of Brisbane in Australia, a method of conveying these essential components that constitute a cities continuity of form and active usage. By presenting the past as a repository of urban form characteristics, it is argued that concise architectural responses that stem from such knowledge should result in an engaged urban landscape. The essential proposition is that urban morphology is a missing constituent in the process of urban design, and that the approach of the geographical discipline to the study of urban morphology holds the key to providing the evidence of urban growth characteristics, and this methodology suggests possibilities for an architectural approach that can comprehensively determine qualitative aspects of urban buildings. The relevance of this research lies in a potential to breach the limitations of current urban analysis whilst continuing the evolving currency of urban morphology as an integral practice in the design of our cities.