998 resultados para Directed evolution
Resumo:
By applying a directed evolution methodology specific enzymatic characteristics can be enhanced, but to select mutants of interest from a large mutant bank, this approach requires high throughput screening and facile selection. To facilitate such primary screening of enhanced clones, an expression system was tested that uses a green fluorescent protein (GFP) tag from Aequorea victoria linked to the enzyme of interest. As GFP`s fluorescence is readily measured, and as there is a 1:1 molar correlation between the target protein and GFP, the concept proposed was to determine whether GFP could facilitate primary screening of error-prone PCR (EPP) clones. For this purpose a thermostable beta-glucosidase (BglA) from Fervidobacterium sp. was used as a model enzyme. A vector expressing the chimeric protein BglA-GFP-6XHis was constructed and the fusion protein purified and characterized. When compared to the native proteins, the components of the fusion displayed modified characteristics, such as enhanced GFP thermostability and a higher BglA optimum temperature. Clones carrying mutant BglA proteins obtained by EPP, were screened based on the BglA/GFP activity ratio. Purified tagged enzymes from selected clones resulted in modified substrate specificity.
Resumo:
Directed evolution of cytochrome P450 enzymes represents an attractive means of generating novel catalysts for specialized applications. Xenobiotic-metabolizing P450s are particularly well suited to this approach due to their inherent wide substrate specificity. In the present study, a novel method for DNA shuffling was developed using an initial restriction enzyme digestion step, followed by elimination of long parental sequences by size-selective filtration. P450 2C forms were subjected to a single round of shuffling then coexpressed with reductase in E. coli. A sample (54 clones) of the resultant library was assessed for sequence diversity, hemo- and apoprotein expression, and activity towards the substrate indole. All mutants showed a different RFLP pattern compared to all parents, suggesting that the library was free from contamination by parental forms. Haemoprotein expression was detectable in 45/54 (83%) of the mutants sampled. Indigo production was less than or comparable to the activities of one or more of the parental P450s, but three mutants showed indirubin production in excess of that seen with any parental form, representing a gain of function. In conclusion, a method is presented for the effective shuffling of P450 sequences to generate diverse libraries of mutant P450s containing a high proportion of correctly folded hemoprotein, and minimal contamination with parental forms.
Resumo:
Directed evolution techniques have been used to improve the thermal stability of the xylanase A from Bacillus subtilis (XylA). Two generations of random mutant libraries generated by error prone PCR coupled with a single generation of DNA shuffling produced a series of mutant proteins with increasing thermostability. The most Thermostable XylA variant from the third generation contained four mutations Q7H, G13R, S22P, and S179C that showed an increase in melting temperature of 20 degrees C. The thermodynamic properties Of a representative subset of nine XylA variants showing a range of thermostabilities were measured by thermal denaturation as monitored by the change in the far ultraviolet circular dichroism signal. Analysis of the data from these thermostable variants demonstrated a correlation between the decrease in the heat capacity change (Delta C(p)) with an increase in the midpoint of the transition temperature (T(m)) on transition from the native to the unfolded state. This result could not be interpreted within the context of the changes in accessible surface area of the protein on transition from the native to unfolded states. Since all the mutations are located at the surface of the protein, these results suggest that an explanation of the decrease in Delta C(p) on should include effects arising from the prot inlsolvent interface.
Resumo:
Protein engineering aims to improve the properties of enzymes and affinity reagents by genetic changes. Typical engineered properties are affinity, specificity, stability, expression, and solubility. Because proteins are complex biomolecules, the effects of specific genetic changes are seldom predictable. Consequently, a popular strategy in protein engineering is to create a library of genetic variants of the target molecule, and render the population in a selection process to sort the variants by the desired property. This technique, called directed evolution, is a central tool for trimming protein-based products used in a wide range of applications from laundry detergents to anti-cancer drugs. New methods are continuously needed to generate larger gene repertoires and compatible selection platforms to shorten the development timeline for new biochemicals. In the first study of this thesis, primer extension mutagenesis was revisited to establish higher quality gene variant libraries in Escherichia coli cells. In the second study, recombination was explored as a method to expand the number of screenable enzyme variants. A selection platform was developed to improve antigen binding fragment (Fab) display on filamentous phages in the third article and, in the fourth study, novel design concepts were tested by two differentially randomized recombinant antibody libraries. Finally, in the last study, the performance of the same antibody repertoire was compared in phage display selections as a genetic fusion to different phage capsid proteins and in different antibody formats, Fab vs. single chain variable fragment (ScFv), in order to find out the most suitable display platform for the library at hand. As a result of the studies, a novel gene library construction method, termed selective rolling circle amplification (sRCA), was developed. The method increases mutagenesis frequency close to 100% in the final library and the number of transformants over 100-fold compared to traditional primer extension mutagenesis. In the second study, Cre/loxP recombination was found to be an appropriate tool to resolve the DNA concatemer resulting from error-prone RCA (epRCA) mutagenesis into monomeric circular DNA units for higher efficiency transformation into E. coli. Library selections against antigens of various size in the fourth study demonstrated that diversity placed closer to the antigen binding site of antibodies supports generation of antibodies against haptens and peptides, whereas diversity at more peripheral locations is better suited for targeting proteins. The conclusion from a comparison of the display formats was that truncated capsid protein three (p3Δ) of filamentous phage was superior to the full-length p3 and protein nine (p9) in obtaining a high number of uniquely specific clones. Especially for digoxigenin, a difficult hapten target, the antibody repertoire as ScFv-p3Δ provided the clones with the highest affinity for binding. This thesis on the construction, design, and selection of gene variant libraries contributes to the practical know-how in directed evolution and contains useful information for scientists in the field to support their undertakings.
Resumo:
La dihydrofolate réductase humaine (DHFRh) est une enzyme essentielle à la prolifération cellulaire, ce qui en fait une cible de choix pour le traitement de différents cancers. À cet effet, plusieurs inhibiteurs spécifiques de la DHFRh, les antifolates, ont été mis au point : le méthotrexate (MTX) et le pemetrexed (PMTX) en sont de bons exemples. Malgré l’efficacité clinique certaine de ces antifolates, le développement de nouveaux traitements s’avère nécessaire afin de réduire les effets secondaires liés à leur utilisation. Enfin, dans l’optique d’orienter la synthèse de nouveaux composés inhibiteurs des DHFRh, une meilleure connaissance des interactions entre les antifolates et leur enzyme cible est primordiale. À l’aide de l’évolution dirigée, il a été possible d’identifier des mutants de la DHFRh pour lesquels l’affinité envers des antifolates cliniquement actifs se voyait modifiée. La mutagenèse dite ¬¬de saturation a été utilisée afin de générer des banques de mutants présentant une diversité génétique au niveau des résidus du site actif de l’enzyme d’intérêt. De plus, une nouvelle méthode de criblage a été mise au point, laquelle s’est avérée efficace pour départager les mutations ayant entrainé une résistance aux antifolates et/ou un maintient de l’activité enzymatique envers son substrat natif, soient les phénotypes d’activité. La méthode de criblage consiste dans un premier temps en une sélection bactérienne à haut débit, puis dans un second temps en un criblage sur plaques permettant d’identifier les meilleurs candidats. Plusieurs mutants actifs de la DHFRh, résistants aux antifolates, ont ainsi pu être identifiés et caractérisés lors d’études de cinétique enzymatique (kcat et IC50). Sur la base de ces résultats cinétiques, de la modélisation moléculaire et des données structurales de la littérature, une étude structure-activité a été effectuée. En regardant quelles mutations ont les effets les plus significatif sur la liaison, nous avons commencé à construire un carte moléculaire des contacts impliqués dans la liaison des ligands. Enfin, des connaissances supplémentaires sur les propriétés spécifiques de liaison ont put être acquises en variant l’inhibiteur testé, permettant ainsi une meilleure compréhension du phénomène de discrimination du ligand.
Resumo:
Antimicrobial peptides (AMPs) are effector molecules of innate immune systems found in different groups of organisms, including microorganisms, plants, insects, amphibians and humans. These peptides exhibit several structural motifs but the most abundant AMPs assume an amphipathic alpha-helical structure. The alpha-helix forming antimicrobial peptides are excellent candidates for protein engineering leading to an optimization of their biological activity and target specificity. Nowadays several approaches are available and this review deals with the use of combinatorial synthesis and directed evolution in order to provide a high-throughput source of antimicrobial peptides analogues with enhanced lytic activity and specificity.
Resumo:
Directed evolution was used to improve the thermostability of Aspergillus niger glucoamylase (GA) expressed in Saccharomyces cerevisiae. A starch-plate assay developed to screen GA mutants for thermostability gave results consistent with those of irreversible thermoinactivation kinetic analysis. Several thermostable multiply-mutated GAs were isolated and characterized by DNA sequencing and kinetic analysis. Three new GA mutations, T62A, T290A and H391Y, have been identified that encode GAs that are more thermostable than wild-type GA, and that improve thermostability cumulatively. These individual mutations were combined with the previously constructed thermostable site-directed mutations D20C/A27C (forming a disulficle bond), S30P, and G137A to create a multiply-mutated GA designated THS8. THS8 GA is substantially more thermostable than wild-type GA at 8OoC, with a 5.1 kJ/mol increase in the free energy of therrnoinactivation, making it the most thermostable Aspergillus niger GA mutant characterized to date. THS8 GA and the singly-mutated GAs have specific activities and catalytic efficiencies (k(cat)/K-m) similar to those of wild-type GA.
Resumo:
We have used in vitro evolution to probe the relationship between stability and activity in a mesophilic esterase. Previous studies of these properties in homologous enzymes evolved for function at different temperatures have suggested that stability at high temperatures is incompatible with high catalytic activity at low temperatures through mutually exclusive demands on enzyme flexibility. Six generations of random mutagenesis, recombination, and screening stabilized Bacillus subtilis p-nitrobenzyl esterase significantly (>14°C increase in Tm) without compromising its catalytic activity at lower temperatures. Furthermore, analysis of the stabilities and activities of large numbers of random mutants indicates that these properties are not inversely correlated. Although enhanced thermostability does not necessarily come at the cost of activity, the process by which the molecule adapts is important. Mutations that increase thermostability while maintaining low-temperature activity are very rare. Unless both properties are constrained (by natural selection or screening) the evolution of one by the accumulation of single amino acid substitutions typically comes at the cost of the other, regardless of whether the two properties are inversely correlated or not correlated at all.
Resumo:
Single-chain antibody mutants have been evolved in vitro with antigen-binding equilibrium dissociation constant Kd = 48 fM and slower dissociation kinetics (half-time > 5 days) than those for the streptavidin–biotin complex. These mutants possess the highest monovalent ligand-binding affinity yet reported for an engineered protein by over two orders of magnitude. Optimal kinetic screening of randomly mutagenized libraries of 105–107 yeast surface-displayed antibodies enabled a >1,000-fold decrease in the rate of dissociation after four cycles of affinity mutagenesis and screening. The consensus mutations are generally nonconservative by comparison with naturally occurring mouse Fv sequences and with residues that do not contact the fluorescein antigen in the wild-type complex. The existence of these mutants demonstrates that the antibody Fv architecture is not intrinsically responsible for an antigen-binding affinity ceiling during in vivo affinity maturation.
Resumo:
Enzymes participating in different metabolic pathways often have similar catalytic mechanisms and structures, suggesting their evolution from a common ancestral precursor enzyme. We sought to create a precursor-like enzyme for N′-[(5′-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (ProFAR) isomerase (HisA; EC 5.3.1.16) and phosphoribosylanthranilate (PRA) isomerase (TrpF; EC 5.3.1.24), which catalyze similar reactions in the biosynthesis of the amino acids histidine and tryptophan and have a similar (βα)8-barrel structure. Using random mutagenesis and selection, we generated several HisA variants that catalyze the TrpF reaction both in vivo and in vitro, and one of these variants retained significant HisA activity. A more detailed analysis revealed that a single amino acid exchange could establish TrpF activity on the HisA scaffold. These findings suggest that HisA and TrpF may have evolved from an ancestral enzyme of broader substrate specificity and underscore that (βα)8-barrel enzymes are very suitable for the design of new catalytic activities.
Resumo:
A general scheme is described for the in vitro evolution of protein catalysts in a biologically amplifiable system. Substrate is covalently and site specifically attached by a flexible tether to the pIII coat protein of a filamentous phage that also displays the catalyst. Intramolecular conversion of substrate to product provides a basis for selecting active catalysts from a library of mutants, either by release from or attachment to a solid support. This methodology has been developed with the enzyme staphylococcal nuclease as a model. An analysis of factors influencing the selection efficiency is presented, and it is shown that phage displaying staphylococcal nuclease can be enriched 100-fold in a single step from a library-like ensemble of phage displaying noncatalytic proteins. Additionally, this approach should allow one to functionally clone natural enzymes, based on their ability to catalyze specific reactions (e.g., glycosyl transfer, sequence-specific proteolysis or phosphorylation, polymerization, etc.) rather than their sequence- or structural homology to known enzymes.
Resumo:
We describe compartmentalized self-replication (CSR), a strategy for the directed evolution of enzymes, especially polymerases. CSR is based on a simple feedback loop consisting of a polymerase that replicates only its own encoding gene. Compartmentalization serves to isolate individual self-replication reactions from each other. In such a system, adaptive gains directly (and proportionally) translate into genetic amplification of the encoding gene. CSR has applications in the evolution of polymerases with novel and useful properties. By using three cycles of CSR, we obtained variants of Taq DNA polymerase with 11-fold higher thermostability than the wild-type enzyme or with a >130-fold increased resistance to the potent inhibitor heparin. Insertion of an extra stage into the CSR cycle before the polymerase reaction allows its application to enzymes other than polymerases. We show that nucleoside diphosphate kinase and Taq polymerase can form such a cooperative CSR cycle based on reciprocal catalysis, whereby nucleoside diphosphate kinase produces the substrates required for the replication of its own gene. We also find that in CSR the polymerase genes themselves evolve toward more efficient replication. Thus, polymerase genes and their encoded polypeptides cooperate to maximize postselection copy number. CSR should prove useful for the directed evolution of enzymes, particularly DNA or RNA polymerases, as well as for the design and study of in vitro self-replicating systems mimicking prebiotic evolution and viral replication.
Resumo:
Protein engineering is a powerful tool, which correlates protein structure with specific functions, both in applied biotechnology and in basic research. Here, we present a practical teaching course for engineering the green fluorescent protein (GFP) from Aequorea victoria by a random mutagenesis strategy using error-prone polymerase chain reaction. Screening of bacterial colonies transformed with random mutant libraries identified GFP variants with increased fluorescence yields. Mapping the three-dimensional structure of these mutants demonstrated how alterations in structural features such as the environment around the fluorophore and properties of the protein surface can influence functional properties such as the intensity of fluorescence and protein solubility.