551 resultados para Dinophysis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single-step lateral flow immunoassay was developed and validated to detect okadaic acid (OA) and dinophysis toxins (DTXs), which cause diarrhetic shellfish poisoning. The performance characteristics of the test were investigated, in comparison to reference methods (liquid chromatography tandem mass spectrometry and/or bioassay), using both spiked and naturally contaminated shellfish. A portable reader was used to generate a qualitative result, indicating the absence or presence of OA-group toxins, at concentrations relevant to the maximum permitted level (MPL). Sample homogenates could be screened in 20 min (including extraction and assay time) for the presence of free toxins (OA, DTX1, DTX2). DTX3 detection could be included with the addition of a hydrolysis procedure. No matrix effects were observed from the species evaluated (mussels, scallops, oysters, and clams). Results from naturally contaminated samples (n = 72) indicated no false compliant results and no false noncompliant results at <50% MPL. Thus, the development of a new low-cost but highly effective tool for monitoring a range of important phycotoxins has been demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The marine dinoflagellate genus Dinophysis includes species that are the causative agents of diarrhetic shellfish poisoning (DSP). Recent findings indicate that some Dinophysis species are mixotrophic, i.e. capable of both autotrophic and heterotrophic nutrition. We investigated inorganic (and organic) carbon uptake by several species of Dinophysis in the Light and dark using the 'single-cell C-14 method', and compared uptake rates with those of photosynthetic Ceratium species and heterotrophic dinoflagellates in the genus Protoperidinium. Experiments were conducted with water from the Gullmar Fjord and from the Koster Strait (Swedish west coast). Nutrient-enriched phytoplankton from surface water samples were concentrated (20 to 70 mu m) and incubated at in situ temperature under artificial light conditions with high concentrations of inorganic C-14 (1 mu Ci ml(-1)). Individual cells of each desired species were manually isolated under a microscope and transferred to scintillation vials. C. tripes showed net C-14 uptake only during light periods, whereas both C. lineatum and C. furca showed C-14 uptake in the Light as well as uptake (and sometimes losses) in the dark. Dinophysis species had similar carbon fixation rates in Light compared to Ceratium species. For D. acuminata and D. norvegica, net carbon uptake occurred in both Light and dark periods. D. acuta showed a loss of carbon in the dark in one experiment, but in another, dark C uptake was significantly higher than uptake in Light. When exposed to Light, C. furca, D. norvegica and D. acuta had high specific carbon uptake rates. Growth rates for the different species were calculated from C-14 uptake by the cells during the first hours of incubation in light. D. acuminata and D. norvegica had similar maximum growth rates, 0.59 and 0.63 d(-1) (mu); the maximum growth rate of D. acuta was lower (0.41 d(-1)). The positive dark carbon uptake by Dinophysis may suggest a mixotrophic mode of nutrition. In one experiment, both D. norvegica and D. acuta showed a significantly higher carbon uptake in a dark bottle than in a Light bottle, which would be consistent with uptake of C-14-labeled organic matter by D. norvegica and D. acuta. Demonstration of direct uptake of dissolved and particulate organic matter would provide conclusive evidence of mixotrophy and this will require the development of new protocols for measuring organic matter uptake applicable to Dinophysis in the natural assemblages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical regression analysis can be used to model time series. However, the assumption that model parameters are constant over time is not necessarily adapted to the data. In phytoplankton ecology, the relevance of time-varying parameter values has been shown using a dynamic linear regression model (DLRM). DLRMs, belonging to the class of Bayesian dynamic models, assume the existence of a non-observable time series of model parameters, which are estimated on-line, i.e. after each observation. The aim of this paper was to show how DLRM results could be used to explain variation of a time series of phytoplankton abundance. We applied DLRM to daily concentrations of Dinophysis cf. acuminata, determined in Antifer harbour (French coast of the English Channel), along with physical and chemical covariates (e.g. wind velocity, nutrient concentrations). A single model was built using 1989 and 1990 data, and then applied separately to each year. Equivalent static regression models were investigated for the purpose of comparison. Results showed that most of the Dinophysis cf. acuminata concentration variability was explained by the configuration of the sampling site, the wind regime and tide residual flow. Moreover, the relationships of these factors with the concentration of the microalga varied with time, a fact that could not be detected with static regression. Application of dynamic models to phytoplankton time series, especially in a monitoring context, is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study deals with algal species occurring commonly in the Baltic Sea: haptophyte Prymnesium parvum, dinoflagellates Dinophysis acuminata, D. norvegica and D. rotundata, and cyanobacterium Nodularia spumigena. The hypotheses are connected to the toxicity of the species, to the factors determining toxicity, to the consequences of toxicity and to the transfer of toxins in the aquatic food web. Since the Baltic Sea is severely eutrophicated, the fast-growing haptophytes have potential in causing toxic blooms. In our studies, the toxicity (as haemolytic activity) of the haptophyte P. parvum was highest under phosphorus-limited conditions, but the cells were toxic also under nitrogen limitation and under nutrient-balanced growth conditions. The cellular nutrient ratios were tightly related to the toxicity. The stoichiometric flexibility for cellular phosphorus quota was higher than for nitrogen, and nitrogen limitation led to decreased biomass. Negative allelopathic effects on another algae (Rhodomonas salina) could be observed already at low P. parvum cell densities, whereas immediate lysis of R. salina cells occurred at P. parvum cell densities corresponding to natural blooms. Release of dissolved organic carbon from the R. salina cells was measured within 30 minutes, and an increase in bacterial number and biomass was measured within 23 h. Because of the allelopathic effect, formation of a P. parvum bloom may accelerate after a critical cell density is reached and the competing species are eliminated. A P. parvum bloom indirectly stimulates bacterial growth, and alters the functioning of the planktonic food web by increasing the carbon transfer through the microbial loop. Our results were the first reports on DSP toxins in Dinophysis cells in the Gulf of Finland and on PTX-2 in the Baltic Sea. Cellular toxin contents in Dinophysis spp. ranged from 0.2 to 149 pg DTX-1 cell-1 and from 1.6 to 19.9 pg PTX-2 cell-1 in the Gulf of Finland. D. norvegica was found mainly around the thermocline (max. 200 cells L-1), whereas D. acuminata was found in the whole mixed layer (max. 7 280 cells L-1). Toxins in the sediment trap corresponded to 1 % of DTX-1 and 0.01 % PTX-2 of the DSP pool in the suspended matter. This indicates that the majority of the DSP toxins does not enter the benthic community, but is either decomposed in the water column, or transferred to higher trophic levels in the planktonic food chain. We found that nodularin, produced by Nodularia spumigena, was transferred to the copepod Eurytemora affinis through three pathways: by grazing on filaments of small Nodularia, directly from the dissolved pool, and through the microbial food web by copepods grazing on ciliates, dinoflagellates and heterotrophic nanoflagellates. The estimated proportion of the microbial food web in nodularin transfer was 22-45 % and 71-76 % in our two experiments, respectively. This highlights the potential role of the microbial food web in the transfer of toxins in the planktonic food web.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the studies reported in this thesis was to examine the feeding interactions between calanoid copepods and toxic algae in the Baltic Sea. The central questions in this research concerned the feeding, survival and egg production of copepods exposed to toxic algae. Furthermore, the importance of copepods as vectors in toxin transfer was examined. The haptophyte Prymnesium parvum, which produces extracellular toxins, was the only studied species that directly harmed copepods. Beside this, it had allelopathic effects (cell lysis) on non-toxic Rhodomonas salina. Copepods that were exposed to P. parvum filtrates died or became severely impaired, although filtrates were not haemolytic (indicative of toxicity in this study). Monospecific Prymnesium cell suspensions, in turn, were haemolytic and copepods in these treatments became inactive, although no clear effect on mortality was detected. These results suggest that haemolytic activity may not be a good proxy of the harmful effects of P. parvum. In addition, P. parvum deterred feeding, and low egestion and suppressed egg production were consequently observed in monospecific suspensions of Prymnesium. Similarly, ingestion and faecal pellet production rates were suppressed in high concentration P. parvum filtrates and in mixtures of P. parvum and R. salina. These results indicate that the allelopathic effects of P. parvum on other algal species together with lowered viability as well as suppressed production of copepods may contribute to bloom formation and persistence. Furthermore, the availability of food for planktivorous animals may be affected due to reduced copepod productivity. Nodularin produced by Nodularia spumigena was transferred to Eurytemora affinis via grazing on filaments of small N. spumigena and by direct uptake from the dissolved pool. Copepods also acquired nodularin in fractions where N. spumigena filaments were absent. Thus, the importance of microbial food webs in nodularin transfer should be considered. Copepods were able to remove particulate nodularin from the system, but at the same time a large proportion of the nodularin disappeared. This indicates that copepods may possess effective mechanisms to remove toxins from their tissues. The importance of microorganisms, such as bacteria, in the degradation of cyanobacterial toxins could also be substantial. Our results were the first reports of the accumulation of diarrhetic shellfish toxins (DSTs) produced by Dinophysis spp. in copepods. The PTX2 content in copepods after feeding experiments corresponded to the ingestion of <100 Dinophysis spp. cells. However, no DSTs were recorded from field-collected copepods. Dinophysis spp. was not selected by the copepods and consumption remained low. It seems thus likely that copepods are an unimportant link in the transfer of DSTs in the northern Baltic Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytoplankton cell count, percentage composition and species diversity at 4 locations of different depth contours in the coastal waters of Mangalore, west coast of India were studied for a period of 8 months. A total of 27 genera of phytoplankton were recorded from the area of which 20 belonged to diatoms, 6 /dinoflagellates and 1 blue-green algae. On an average the population density was higher at 4 m depth contour (280.48xl04 cells/m3 ) than 8m depth contour (97.79xl04 cells/m3 ). The plankton cell density in the present study is much higher than the earlier observations made elsewhere which might be due to intense blooming of Chaetoceros, Cosctnodiscus, Ceratium, Dinophysis and blue-green algae along this coast during the study period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method based on protein phosphatase enzyme activity inhibition for the detection of diarrhetic shellfish poison (DSP) was used to analyze the DSP toxicity in three oyster samples. Based on the standard dose-effect curve developed with a series of okadaic acid (OA) standard solutions, the DSP toxicity of the three oyster samples collected were screened, and the results showed that there were no OA and dinophysis toxins ( DTXs) in the samples without hydrolization. However, the OA toxicity could be detected in two of the hydrolyzed samples, and the OA toxicity of the two samples were 1.81 and 1.21 mu g OA eq./kg oyster, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A small proportion of harmful algae produce toxins which are harmful to human health. Strict monitoring programmes are in place within Ireland and the EU to effectively manage risk to human consumers of shellfish species that have accumulated marine biotoxins in their tissues. However, little is known about the impacts of HABs on shellfish health. This study used Solid Phase Adsorption and Toxin Tracking (SPATT) for the passive sampling of algal biotoxins at Lough Hyne Marine Nature Reserve in West Cork, Ireland. Spatial and temporal monitoring of the incidence of a wide range of lipophilic toxins was assessed over a 4-month period. Active sampling accumulated sufficient quantities of toxin for use in subsequent experimentation. In addition to commonly occurring Diarrhetic Shellfish Poisoning (DSP) toxins, Dinophysis toxin-1 and Pinnatoxin-G were both detected in the samples. This is the first identification of these latter two toxins in Irish waters. The effects of the DSP toxin okadaic acid (OA) were investigated on three shellfish species: Mytilus edulis, Ruditapes philippinarum and Crassostrea gigas. Histological examination of the gill, mantle and hepatopancreas tissues revealed varying intensity of damage depending both on the tissue type and the species involved. At the cellular level, flow cytometric analysis of the differential cell population distribution was assessed. No change in cell population distribution was observed in Mytilus edulis or Ruditapes philippinarum, however significant changes were observed in Crassostrea gigas granulocytes at the lower levels of toxin exposure. This indicated a chemically-induced response to OA. DNA fragmentation was measured in the haemolymph and hepatopancreas cells post OA-exposure in Mytilus edulis and Crassostrea gigas. A significant increase in DNA fragmentation was observed in both species over time, even at the lowest OA concentrations. DNA fragmentation could be due to genotoxicity of OA and/or to the induction of cell apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, there are no fast in vitro broad spectrum screening bioassays for the detection of marine toxins. The aim of this study was to develop such an assay. In gene expression profiling experiments 17 marker genes were provisionally selected that were differentially regulated in human intestinal Caco-2 cells upon exposure to the lipophilic shellfish poisons azaspiracid-1 (AZA1) or dinophysis toxin-1 (DTX1). These 17 genes together with two control genes were the basis for the design of a tailored microarray platform for the detection of these marine toxins and potentially others. Five out of the 17 selected marker genes on this dedicated DNA microarray gave dear signals, whereby the resulting fingerprints could be used to detect these toxins. CEACAM1, DDIT4, and TUBB3 were up-regulated by both AZA1 and DTX1, TRIB3 was up-regulated by AZA1 only, and OSR2 by DTX1 only. Analysis by singleplex qRT-PCR revealed the up- and down-regulation of the selected RGS16 and NPPB marker genes by DTX1, that were not envisioned by the new developed dedicated array. The qRT-PCR targeting the DDIT4, RSG16 and NPPB genes thus already resulted in a specific pattern for AZA1 and DTX1 indicating that for this specific case qRT-PCR might a be more suitable approach than a dedicated array.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein G-coated magnetic particles (MPs) were used as immobilisation supports for an antibody against okadaic acid (MAb(OA)) and carriers into a surface plasmon resonance (SPR) device for the development of a direct competitive immunosensor for okadaic acid (OA). SPR analysis of MAb(OA)-MP conjugates demonstrated that conjugations were successful with complete immobilisation of all the antibody biomolecules onto the MPs. Moreover, MAb(OA)-MP conjugates provided up to 11-fold higher SPR signals, compared to free MAb(OA). The use of conjugates in the direct competition assay provided a 3-fold lower LOD mu g/L (2.6 mu g of OA/L, equivalent to 12 mu g of OA/kg mussel meat). The presence of mussel matrix did not interfere in the OA quantification as seen in the calibration curves. Mussel samples, obtained from Ebro Delta's bays (NW Mediterranean) during a diarrheic shellfish poisoning (DSP) event and in the presence of Dinophysis sacculus, an OA producer, in the shellfish production area, were analysed with the MP-based SPR immunosensor. The OA contents correlated with those obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (y = 0.984x -5.273, R-2 = 0.789, p <0.001) and by mouse bioassay (MBA).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phytoplankton standing crop was assessed in detail along the South Eastern Arabian Sea (SEAS) during the different phases of coastal upwelling in 2009.During phase 1 intense upwelling was observed along the southern transects (8◦N and 8.5◦N). The maximum chlorophyll a concentration (22.7 mg m −3) was observed in the coastal waters off Thiruvananthapuram (8.5◦N). Further north there was no signature of upwelling, with extensive Trichodesmium erythraeum blooms. Diatoms dominated in these upwelling regions with the centric diatom Chaetoceros curvisetus being the dominant species along the 8◦N transect. Along the 8.5◦N transect pennate diatoms like Nitzschia seriata and Pseudo-nitzschia sp. dominated. During phase 2, upwelling of varying intensity was observed throughout the study area with maximum chlorophyll a concentrations along the 9◦N transect (25 mg m−3) with Chaetoceros curvisetus as the dominant phytoplankton. Along the 8.5◦N transect pennate diatoms during phase 1 were replaced by centric diatoms like Chaetoceros sp. The presence of solitary pennate diatoms Amphora sp. and Navicula sp. were significant in the waters off Kochi. Upwelling was waning during phase 3 and was confined to the coastal waters of the southern transects with the highest chlorophyll a concentration of 11.2 mg m−3. Along with diatoms, dinoflagellate cell densities increased in phases 2 and 3. In the northern transects (9◦N and 10◦N) the proportion of dinoflagellates was comparatively higher and was represented mainly by Protoperidinium spp., Ceratium spp. and Dinophysis spp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluated the role of microzooplankton (sensu latto, grazers <500 µm) in determining the fate of phytoplankton production (PP) along a glacier-to-open sea transect in the Greenland subarctic fjord, Godthabfjord. Based on the distribution of size fractionated chlorophyll a (chl a) concentrations we established 4 zones: (1) Fyllas Bank, characterized by deep chl a maxima (ca. 30 to 40 m) consisting of large cells, (2) the mouth and main branch of the fjord, where phytoplankton was relatively homogeneously distributed in the upper 30 m layer, (3) inner waters influenced by glacial melt water and upwelling, with high chl a concentrations (up to 12 µg/l) in the >10 µm fraction within a narrow (2 m) subsurface layer, and (4) the Kapisigdlit branch of the fjord, ice-free, and characterized with a thick and deep chl a maximum layer. Overall, microzooplankton grazing impact on primary production was variable and seldom significant in the Fyllas Bank and mouth of the fjord, quite intensive (up to >100% potential PP consumed daily) in the middle part of the main and Kapisigdlit branches of the fjord, and rather low and unable to control the fast growing phytoplankton population inhabiting the nutrient rich waters in the upwelling area in the vicinity of the glacier. Most of the grazing impact was on the <10 µm phytoplankton fraction, and the major grazers of the system seem to be >20 µm microzooplankton, as deducted from additional dilution experiments removing this size fraction. Overall, little or no export of phytoplankton out of the fjord to the Fyllas Bank can be determined from our data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A monitoring programme for microzooplankton was started at the long-term sampling station ''Kabeltonne'' at Helgoland Roads (54°11.30' N; 7°54.00' E) in January 2007 in order to provide more detailed knowledge on microzooplankton occurrence, composition and seasonality patterns at this site and to complement the existing plankton data series. Ciliate and dinoflagellate cell concentration and carbon biomass were recorded on a weekly basis. Heterotrophic dinoflagellates were considerably more important in terms of biomass than ciliates, especially during the summer months. However, in early spring, ciliates were the major group of microzooplankton grazers as they responded more quickly to phytoplankton food availability. Mixotrophic dinoflagellates played a secondary role in terms of biomass when compared to heterotrophic species; nevertheless, they made up an intense late summer bloom in 2007. The photosynthetic ciliate Myrionecta rubra bloomed at the end of the sampling period. Due to its high biomass when compared to crustacean plankton especially during the spring bloom, microzooplankton should be regarded as the more important phytoplankton grazer group at Helgoland Roads. Based on these results, analyses of biotic and abiotic factors driving microzooplankton composition and abundance are necessary for a full understanding of this important component of the plankton.