925 resultados para Dihydropyrimidine dehydrogenase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Low tumour expression levels of thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD) and thymidine phosphorylase (TP) have been linked with improved outcome for colorectal cancer (CRC) patients treated with 5-fluorouracil (5-FU). It is unclear whether this occurs because such tumours have better prognosis or they are more sensitive to 5-FU treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of polymorphisms in the dihydropyrimidine dehydrogenase (DPD) gene (DPYD) for the prediction of severe toxicity in 5-fluorouracil (5-FU) based chemotherapy has been controversially debated. As a key enzyme in the catabolism of 5-FU, DPD is the top candidate for pharmacogenetic studies on 5-FU toxicity, since a reduced DPD activity is thought to result in an increased half-life of the drug, and thus, an increased risk of toxicity. Here, we review the current knowledge on well-known and frequently studied DPYD variants such as the c.1905+1G>A splice site variant, as well as the recent discoveries of important functional variation in the noncoding regions of DPYD. We also outline future directions that are needed to further improve the risk assessment of 5-FU toxicity, in particular with respect to metabolic profiling and in the context of different combination therapeutic regimens, in which 5-FU is used today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the clinical relevance of dihydropyrimidine dehydrogenase gene (DPYD) variants to predict severe early-onset fluoropyrimidine (FP) toxicity, in particular of a recently discovered haplotype hapB3 and a linked deep intronic splice site mutation c.1129-5923C>G. Selected regions of DPYD were sequenced in prospectively collected germline DNA of 500 patients receiving FP-based chemotherapy. Associations of DPYD variants and haplotypes with hematologic, gastrointestinal, infectious, and dermatologic toxicity in therapy cycles 1-2 and resulting FP-dose interventions (dose reduction, therapy delay or cessation) were analyzed accounting for clinical and demographic covariates. Fifteen additional cases with toxicity-related therapy delay or cessation were retrospectively examined for risk variants. The association of c.1129-5923C>G/hapB3 (4.6% carrier frequency) with severe toxicity was replicated in an independent prospective cohort. Overall, c.1129-5923G/hapB3 carriers showed a relative risk of 3.74 (RR, 95% CI = 2.30-6.09, p = 2 × 10(-5)) for severe toxicity (grades 3-5). Of 31 risk variant carriers (c.1129-5923C>G/hapB3, c.1679T>G, c.1905+1G>A or c.2846A>T), 11 (all with c.1129-5923C>G/hapB3) experienced severe toxicity (15% of 72 cases, RR = 2.73, 95% CI = 1.61-4.63, p = 5 × 10(-6)), and 16 carriers (55%) required FP-dose interventions. Seven of the 15 (47%) retrospective cases carried a risk variant. The c.1129-5923C>G/hapB3 variant is a major contributor to severe early-onset FP toxicity in Caucasian patients. This variant may substantially improve the identification of patients at risk of FP toxicity compared to established DPYD risk variants (c.1905+1G>A, c.1679T>G and c.2846A>T). Pre-therapeutic DPYD testing may prevent 20-30% of life-threatening or lethal episodes of FP toxicity in Caucasian patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

5-Fluorouracil (5-FU) is one of the most widely used drugs for treatment of cancers, including breast cancer that exhibits its anticancer activity by inhibiting DNA synthesis and also incorporated into DNA and RNA. The objective of this investigation was to find out the total nucleotide metabolism genes regulated by 5-FU in breast cancer cell line. The breast cancer cell line MCF-7 was treated with the drug 5-FU. To analyze the expression of genes, we have conducted the experiment using 1.7k and 19k human microarray slide and confirmed the expression of genes by semiquantitative reverse transcription-polymerase chain reaction. The expression of 44 genes involved in the nucleotide metabolism pathway was quantified. Of these 44 genes analyzed, transcription of 6 genes were upregulated and 9 genes were downregulated. Earlier studies revealed that the transcription of genes for key enzymes like thymidylate synthase, thymidinekinase, and dihydropyrimidine dehydrogenase are regulated by 5-FU. This study identified some novel genes like thioredoxin reductase, ectonucleotide triphosphate dephosphorylase, and CTP synthase are regulated by 5-FU. The data also reveal large-scale perturbation in transcription of genes not involved directly in the known mechanism of action of 5-FU.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is one of the most frequently occurring malignancies worldwide, and the second leading cause of cancer related death in the Western World. Although early stage disease is curable by surgical resection alone, one half of patients with CRC will present with metastatic disease at some stage in the course of their disease. The most active drug in the treatment of CRC is 5-fluorouracil (5-FU) which is used in both the adjuvant and advanced settings. The use of adjuvant therapy is of proven benefit in Stage III CRC, however, its role in Stage II disease is less clear. There is therefore a need to identify those patients with early stage disease who will develop recurrent disease, and who would therefore benefit most from adjuvant treatment. In the advanced setting, the use of irinotecan and oxaliplatin in combination with 5-FU has proven beneficial, with yet further improvements in survival reported with the addition of new targeted agents such as bevacizamab. Despite this, a significant number of patients with advanced disease do not derive any benefit from the chemotherapy they receive, highlighting a need for the development of molecular or genomic markers predictive of response to these chemotherapeutic agents. This review will evaluate the recent advances in pharmacogenomics in CRC, in particular the development of predictive markers of response to chemotherapy. The successful identification of these markers of response will herald an era of personalised treatment, reducing treatment-related toxicity and improving outcome of patients with CRC. -cr 2007 Bentham Science Publishers Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Specific language impairment (SLI) is a complex neurodevelopmental disorder defined as an unexpected failure to develop normal language abilities for no obvious reason. Copy number variants (CNVs) are an important source of variation in the susceptibility to neuropsychiatric disorders. Therefore, a CNV study within SLI families was performed to investigate the role of structural variants in SLI. Among the identified CNVs, we focused on CNVs on chromosome 15q11-q13, recurrently observed in neuropsychiatric conditions, and a homozygous exonic microdeletion in ZNF277. Since this microdeletion falls within the AUTS1 locus, a region linked to autism spectrum disorders (ASD), we investigated a potential role of ZNF277 in SLI and ASD. Frequency data and expression analysis of the ZNF277 microdeletion suggested that this variant may contribute to the risk of language impairments in a complex manner, that is independent of the autism risk previously described in this region. Moreover, we identified an affected individual with a dihydropyrimidine dehydrogenase (DPD) deficiency, caused by compound heterozygosity of two deleterious variants in the gene DPYD. Since DPYD represents a good candidate gene for both SLI and ASD, we investigated its involvement in the susceptibility to these two disorders, focusing on the splicing variant rs3918290, the most common mutation in the DPD deficiency. We observed a higher frequency of rs3918290 in SLI cases (1.2%), compared to controls (~0.6%), while no difference was observed in a large ASD cohort. DPYD mutation screening in 4 SLI and 7 ASD families carrying the splicing variant identified six known missense changes and a novel variant in the promoter region. These data suggest that the combined effect of the mutations identified in affected individuals may lead to an altered DPD activity and that rare variants in DPYD might contribute to a minority of cases, in conjunction with other genetic or non-genetic factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemotherapeutic drug 5-fluorouracil (5-FU) is widely used for treating solid tumors. Response to 5-FU treatment is variable with 10-30% of patients experiencing serious toxicity partly explained by reduced activity of dihydropyrimidine dehydrogenase (DPD). DPD converts endogenous uracil (U) into 5,6-dihydrouracil (UH(2) ), and analogously, 5-FU into 5-fluoro-5,6-dihydrouracil (5-FUH(2) ). Combined quantification of U and UH(2) with 5-FU and 5-FUH(2) may provide a pre-therapeutic assessment of DPD activity and further guide drug dosing during therapy. Here, we report the development of a liquid chromatography-tandem mass spectrometry assay for simultaneous quantification of U, UH(2) , 5-FU and 5-FUH(2) in human plasma. Samples were prepared by liquid-liquid extraction with 10:1 ethyl acetate-2-propanol (v/v). The evaporated samples were reconstituted in 0.1% formic acid and 10 μL aliquots were injected into the HPLC system. Analyte separation was achieved on an Atlantis dC(18) column with a mobile phase consisting of 1.0 mm ammonium acetate, 0.5 mm formic acid and 3.3% methanol. Positively ionized analytes were detected by multiple reaction monitoring. The analytical response was linear in the range 0.01-10 μm for U, 0.1-10 μm for UH(2) , 0.1-75 μm for 5-FU and 0.75-75 μm for 5-FUH(2) , covering the expected concentration ranges in plasma. The method was validated following the FDA guidelines and applied to clinical samples obtained from ten 5-FU-treated colorectal cancer patients. The present method merges the analysis of 5-FU pharmacokinetics and DPD activity into a single assay representing a valuable tool to improve the efficacy and safety of 5-FU-based chemotherapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study was initiated to assess the quantitative impact of patient anthropometrics and dihydropyrimidine dehydrogenase (DPYD) mutations on the pharmacokinetics (PK) of 5-fluorouracil (5FU) and to explore limited sampling strategies of 5FU.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemotherapeutic use of 5-fluorouracil (5FU) is compromised by 10-20% of patients developing severe toxicity. Recently described genetic variation in dihydropyrimidine dehydrogenase (DPYD) has been shown to be a major predictor of 5FU toxicity. Here, we describe a new genotyping assay for routine clinical use that covers all the major DPYD risk variants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The activity of dihydropyrimidine dehydrogenase (DPD), the key enzyme of pyrimidine catabolism, is thought to be an important determinant for the occurrence of severe toxic reactions to 5-fluorouracil (5-FU), which is one of the most commonly prescribed chemotherapeutic agents for the treatment of solid cancers. Genetic variation in the DPD gene (DPYD) has been proposed as a main factor for variation in DPD activity in the population. However, only a small proportion of severe toxicities in 5-FU based chemotherapy can be explained with such rare deleterious DPYD mutations resulting in severe enzyme deficiencies. Recently, hypermethylation of the DPYD promoter region has been proposed as an alternative mechanism for DPD deficiency and thus as a major cause of severe 5-FU toxicity. METHODS: Here, the prognostic significance of this epigenetic marker with respect to severe 5-FU toxicity was assessed in 27 cancer patients receiving 5-FU based chemotherapy, including 17 patients experiencing severe toxic side effects following drug administration, none of which were carriers of a known deleterious DPYD mutation, and ten control patients. The methylation status of the DPYD promoter region in peripheral blood mononuclear cells was evaluated by analysing for each patient between 19 and 30 different clones of a PCR-amplified 209 base pair fragment of the bisulfite-modified DPYD promoter region. The fragments were sequenced to detect bisulfite-induced, methylation-dependent sequence differences. RESULTS: No evidence of DPYD promoter methylation was observed in any of the investigated patient samples, whereas in a control experiment, as little as 10% methylated genomic DNA could be detected. CONCLUSION: Our results indicate that DYPD promoter hypermethylation is not of major importance as a prognostic factor for severe toxicity in 5-FU based chemotherapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE The microRNA miR-27a was recently shown to directly regulate dihydropyrimidine dehydrogenase (DPD), the key enzyme in fluoropyrimidine catabolism. A common polymorphism (rs895819A>G) in the miR-27a genomic region (MIR27A) was associated with reduced DPD activity in healthy volunteers, but the clinical relevance of this effect is still unknown. Here, we assessed the association of MIR27A germline variants with early-onset fluoropyrimidine toxicity. EXPERIMENTAL DESIGN MIR27A was sequenced in 514 patients with cancer receiving fluoropyrimidine-based chemotherapy. Associations of MIR27A polymorphisms with early-onset (cycles 1-2) fluoropyrimidine toxicity were assessed in the context of known risk variants in the DPD gene (DPYD) and additional covariates associated with toxicity. RESULTS The association of rs895819A>G with early-onset fluoropyrimidine toxicity was strongly dependent on DPYD risk variant carrier status (Pinteraction = 0.0025). In patients carrying DPYD risk variants, rs895819G was associated with a strongly increased toxicity risk [OR, 7.6; 95% confidence interval (CI), 1.7-34.7; P = 0.0085]. Overall, 71% (12/17) of patients who carried both rs895819G and a DPYD risk variant experienced severe toxicity. In patients without DPYD risk variants, rs895819G was associated with a modest decrease in toxicity risk (OR, 0.62; 95% CI, 0.43-0.9; P = 0.012). CONCLUSIONS These results indicate that miR-27a and rs895819A>G may be clinically relevant for further toxicity risk stratification in carriers of DPYD risk variants. Our data suggest that direct suppression of DPD by miR-27a is primarily relevant in the context of fluoropyrimidine toxicity in patients with reduced DPD activity. However, miR-27a regulation of additional targets may outweigh its effect on DPD in patients without DPYD risk variants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIMS To assess the association of DPYS and UPB1 genetic variation, encoding the catabolic enzymes downstream of dihydropyrimidine dehydrogenase, with early-onset toxicity from fluoropyrimidine-based chemotherapy. PATIENTS & METHODS The coding and exon-flanking regions of both genes were sequenced in a discovery subset (164 patients). Candidate variants were genotyped in the full cohort of 514 patients. RESULTS & CONCLUSIONS Novel rare deleterious variants in DPYS (c.253C > T and c.1217G > A) were detected once each in toxicity cases and may explain the occurrence of severe toxicity in individual patients, and associations of common variants in DPYS (c.1-1T > C: padjusted = 0.003; OR = 2.53; 95% CI: 1.39-4.62, and c.265-58T > C: padjusted = 0.039; OR = 0.61; 95% CI: 0.38-0.97) with 5-fluorouracil toxicity were replicated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND The best-known cause of intolerance to fluoropyrimidines is dihydropyrimidine dehydrogenase (DPD) deficiency, which can result from deleterious polymorphisms in the gene encoding DPD (DPYD), including DPYD*2A and c.2846A>T. Three other variants-DPYD c.1679T>G, c.1236G>A/HapB3, and c.1601G>A-have been associated with DPD deficiency, but no definitive evidence for the clinical validity of these variants is available. The primary objective of this systematic review and meta-analysis was to assess the clinical validity of c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity. METHODS We did a systematic review of the literature published before Dec 17, 2014, to identify cohort studies investigating associations between DPYD c.1679T>G, c.1236G>A/HapB3, and c.1601G>A and severe (grade ≥3) fluoropyrimidine-associated toxicity in patients treated with fluoropyrimidines (fluorouracil, capecitabine, or tegafur-uracil as single agents, in combination with other anticancer drugs, or with radiotherapy). Individual patient data were retrieved and analysed in a multivariable analysis to obtain an adjusted relative risk (RR). Effect estimates were pooled by use of a random-effects meta-analysis. The threshold for significance was set at a p value of less than 0·0167 (Bonferroni correction). FINDINGS 7365 patients from eight studies were included in the meta-analysis. DPYD c.1679T>G was significantly associated with fluoropyrimidine-associated toxicity (adjusted RR 4·40, 95% CI 2·08-9·30, p<0·0001), as was c.1236G>A/HapB3 (1·59, 1·29-1·97, p<0·0001). The association between c.1601G>A and fluoropyrimidine-associated toxicity was not significant (adjusted RR 1·52, 95% CI 0·86-2·70, p=0·15). Analysis of individual types of toxicity showed consistent associations of c.1679T>G and c.1236G>A/HapB3 with gastrointestinal toxicity (adjusted RR 5·72, 95% CI 1·40-23·33, p=0·015; and 2·04, 1·49-2·78, p<0·0001, respectively) and haematological toxicity (adjusted RR 9·76, 95% CI 3·03-31·48, p=0·00014; and 2·07, 1·17-3·68, p=0·013, respectively), but not with hand-foot syndrome. DPYD*2A and c.2846A>T were also significantly associated with severe fluoropyrimidine-associated toxicity (adjusted RR 2·85, 95% CI 1·75-4·62, p<0·0001; and 3·02, 2·22-4·10, p<0·0001, respectively). INTERPRETATION DPYD variants c.1679T>G and c.1236G>A/HapB3 are clinically relevant predictors of fluoropyrimidine-associated toxicity. Upfront screening for these variants, in addition to the established variants DPYD*2A and c.2846A>T, is recommended to improve the safety of patients with cancer treated with fluoropyrimidines. FUNDING None.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A missense variant (c.1637C>T, T546M) in ABCC11 encoding the MRP8 (multidrug resistance protein 8), a transporter of 5-fluorodeoxyuridine monophosphate, has been associated with an increased risk of 5-fluorouracil-related severe leukopenia. To validate this association, we investigated the impact of the ABCC11 variants c.1637C>T, c.538G>A and c.395+1087C>T on the risk of early-onset fluoropyrimidine-related toxicity in 514 cancer patients. The ABCC11 variant c.1637C>T was strongly associated with severe leukopenia in patients carrying risk variants in DPYD, encoding the key fluoropyrimidine-metabolizing enzyme dihydropyrimidine dehydrogenase (odds ratio (OR): 71.0; 95% confidence interval (CI): 2.5-2004.8; Pc.1637C>T*DPYD=0.013). In contrast, in patients without DPYD risk variants, no association with leukopenia (OR: 0.95; 95% CI: 0.34-2.6) or overall fluoropyrimidine-related toxicity (OR: 1.02; 95% CI: 0.5-2.1) was observed. Our study thus suggests that c.1637C>T affects fluoropyrimidine toxicity to leukocytes particularly in patients with high drug exposure, for example, because of reduced fluoropyrimidine catabolism.