995 resultados para Diffusive epidemic process
Resumo:
We study a stochastic process describing the onset of spreading dynamics of an epidemic in a population composed of individuals of three classes: susceptible (S), infected (I), and recovered (R). The stochastic process is defined by local rules and involves the following cyclic process: S -> I -> R -> S (SIRS). The open process S -> I -> R (SIR) is studied as a particular case of the SIRS process. The epidemic process is analyzed at different levels of description: by a stochastic lattice gas model and by a birth and death process. By means of Monte Carlo simulations and dynamical mean-field approximations we show that the SIRS stochastic lattice gas model exhibit a line of critical points separating the two phases: an absorbing phase where the lattice is completely full of S individuals and an active phase where S, I and R individuals coexist, which may or may not present population cycles. The critical line, that corresponds to the onset of epidemic spreading, is shown to belong in the directed percolation universality class. By considering the birth and death process we analyze the role of noise in stabilizing the oscillations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work we study a connection between a non-Gaussian statistics, the Kaniadakis
statistics, and Complex Networks. We show that the degree distribution P(k)of
a scale free-network, can be calculated using a maximization of information entropy in
the context of non-gaussian statistics. As an example, a numerical analysis based on the
preferential attachment growth model is discussed, as well as a numerical behavior of
the Kaniadakis and Tsallis degree distribution is compared. We also analyze the diffusive
epidemic process (DEP) on a regular lattice one-dimensional. The model is composed
of A (healthy) and B (sick) species that independently diffusive on lattice with diffusion
rates DA and DB for which the probabilistic dynamical rule A + B → 2B and B → A. This
model belongs to the category of non-equilibrium systems with an absorbing state and a
phase transition between active an inactive states. We investigate the critical behavior of
the DEP using an auto-adaptive algorithm to find critical points: the method of automatic
searching for critical points (MASCP). We compare our results with the literature and we
find that the MASCP successfully finds the critical exponents 1/ѵ and 1/zѵ in all the cases
DA =DB, DA
Resumo:
The diffusive epidemic process (PED) is a nonequilibrium stochastic model which, exhibits a phase trnasition to an absorbing state. In the model, healthy (A) and sick (B) individuals diffuse on a lattice with diffusion constants DA and DB, respectively. According to a Wilson renormalization calculation, the system presents a first-order phase transition, for the case DA > DB. Several researches performed simulation works for test this is conjecture, but it was not possible to observe this first-order phase transition. The explanation given was that we needed to perform simulation to higher dimensions. In this work had the motivation to investigate the critical behavior of a diffusive epidemic propagation with Lévy interaction(PEDL), in one-dimension. The Lévy distribution has the interaction of diffusion of all sizes taking the one-dimensional system for a higher-dimensional. We try to explain this is controversy that remains unresolved, for the case DA > DB. For this work, we use the Monte Carlo Method with resuscitation. This is method is to add a sick individual in the system when the order parameter (sick density) go to zero. We apply a finite size scalling for estimates the critical point and the exponent critical =, e z, for the case DA > DB
Resumo:
The pair contact process - PCP is a nonequilibrium stochastic model which, like the basic contact process - CP, exhibits a phase transition to an absorbing state. While the absorbing state CP corresponds to a unique configuration (empty lattice), the PCP process infinitely many. Numerical and theoretical studies, nevertheless, indicate that the PCP belongs to the same universality class as the CP (direct percolation class), but with anomalies in the critical spreading dynamics. An infinite number of absorbing configurations arise in the PCP because all process (creation and annihilation) require a nearest-neighbor pair of particles. The diffusive pair contact process - PCPD) was proposed by Grassberger in 1982. But the interest in the problem follows its rediscovery by the Langevin description. On the basis of numerical results and renormalization group arguments, Carlon, Henkel and Schollwöck (2001), suggested that certain critical exponents in the PCPD had values similar to those of the party-conserving - PC class. On the other hand, Hinrichsen (2001), reported simulation results inconsistent with the PC class, and proposed that the PCPD belongs to a new universality class. The controversy regarding the universality of the PCPD remains unresolved. In the PCPD, a nearest-neighbor pair of particles is necessary for the process of creation and annihilation, but the particles to diffuse individually. In this work we study the PCPD with diffusion of pair, in which isolated particles cannot move; a nearest-neighbor pair diffuses as a unit. Using quasistationary simulation, we determined with good precision the critical point and critical exponents for three values of the diffusive probability: D=0.5 and D=0.1. For D=0.5: PC=0.89007(3), β/v=0.252(9), z=1.573(1), =1.10(2), m=1.1758(24). For D=0.1: PC=0.9172(1), β/v=0.252(9), z=1.579(11), =1.11(4), m=1.173(4)
Resumo:
The pair contact process - PCP is a nonequilibrium stochastic model which, like the basic contact process - CP, exhibits a phase transition to an absorbing state. While the absorbing state CP corresponds to a unique configuration (empty lattice), the PCP process infinitely many. Numerical and theoretical studies, nevertheless, indicate that the PCP belongs to the same universality class as the CP (direct percolation class), but with anomalies in the critical spreading dynamics. An infinite number of absorbing configurations arise in the PCP because all process (creation and annihilation) require a nearest-neighbor pair of particles. The diffusive pair contact process - PCPD) was proposed by Grassberger in 1982. But the interest in the problem follows its rediscovery by the Langevin description. On the basis of numerical results and renormalization group arguments, Carlon, Henkel and Schollwöck (2001), suggested that certain critical exponents in the PCPD had values similar to those of the party-conserving - PC class. On the other hand, Hinrichsen (2001), reported simulation results inconsistent with the PC class, and proposed that the PCPD belongs to a new universality class. The controversy regarding the universality of the PCPD remains unresolved. In the PCPD, a nearest-neighbor pair of particles is necessary for the process of creation and annihilation, but the particles to diffuse individually. In this work we study the PCPD with diffusion of pair, in which isolated particles cannot move; a nearest-neighbor pair diffuses as a unit. Using quasistationary simulation, we determined with good precision the critical point and critical exponents for three values of the diffusive probability: D=0.5 and D=0.1. For D=0.5: PC=0.89007(3), β/v=0.252(9), z=1.573(1), =1.10(2), m=1.1758(24). For D=0.1: PC=0.9172(1), β/v=0.252(9), z=1.579(11), =1.11(4), m=1.173(4)
Resumo:
We consider a hybrid model, created by coupling a continuum and an agent-based model of infectious disease. The framework of the hybrid model provides a mechanism to study the spread of infection at both the individual and population levels. This approach captures the stochastic spatial heterogeneity at the individual level, which is directly related to deterministic population level properties. This facilitates the study of spatial aspects of the epidemic process. A spatial analysis, involving counting the number of infectious agents in equally sized bins, reveals when the spatial domain is nonhomogeneous.
Resumo:
A theory of two-point boundary value problems analogous to the theory of initial value problems for stochastic ordinary differential equations whose solutions form Markov processes is developed. The theory of initial value problems consists of three main parts: the proof that the solution process is markovian and diffusive; the construction of the Kolmogorov or Fokker-Planck equation of the process; and the proof that the transistion probability density of the process is a unique solution of the Fokker-Planck equation.
It is assumed here that the stochastic differential equation under consideration has, as an initial value problem, a diffusive markovian solution process. When a given boundary value problem for this stochastic equation almost surely has unique solutions, we show that the solution process of the boundary value problem is also a diffusive Markov process. Since a boundary value problem, unlike an initial value problem, has no preferred direction for the parameter set, we find that there are two Fokker-Planck equations, one for each direction. It is shown that the density of the solution process of the boundary value problem is the unique simultaneous solution of this pair of Fokker-Planck equations.
This theory is then applied to the problem of a vibrating string with stochastic density.
Resumo:
Two stochastic epidemic lattice models, the susceptible-infected-recovered and the susceptible-exposed-infected models, are studied on a Cayley tree of coordination number k. The spreading of the disease in the former is found to occur when the infection probability b is larger than b(c) = k/2(k - 1). In the latter, which is equivalent to a dynamic site percolation model, the spreading occurs when the infection probability p is greater than p(c) = 1/(k - 1). We set up and solve the time evolution equations for both models and determine the final and time-dependent properties, including the epidemic curve. We show that the two models are closely related by revealing that their relevant properties are exactly mapped into each other when p = b/[k - (k - 1) b]. These include the cluster size distribution and the density of individuals of each type, quantities that have been determined in closed forms.
Resumo:
The objective of this study is to identify the relationship between population density and the initial stages of the spread of disease in a local population. This study proposes to concentrate on the question of how population density affects the distribution of the susceptible individuals in a local population and thus affects the spread of the disease, measles. Population density is measured by the average of the number of contacts with susceptible individuals by each individual in the population during a fixed-length time period. The term “contact with susceptible individuals” means sufficient contact between two people for the disease to pass from an infectious person to a susceptible person. The fixed-length time period is taken to be the average length of time an infected person is infectious without symptoms of the disease. For this study of measles, the time period will be seven days. ^ While much attention has been given to modeling the entire epidemic process of measles, attempts have not been made to study the characteristics of contact rates required to initiate an epidemic. This study explores the relationship between population density, given a specific herd immunity rate in the population, and initial rate of the spread of the disease by considering the underlying distribution of contacts with susceptibles by the individuals in the population. ^ This study does not seek to model an entire measles epidemic, but to model the above stated relationship for the local population within which the first infective person is introduced. This study describes the mathematical relationship between population density parameters and contact distribution parameters. ^ The results are displayed in graphs that show the effects of different population densities on the spread of disease. The results support the idea that the number of new infectives is strongly related to the distribution of susceptible contacts. The results also show large differences in the epidemic measures between populations with densities equal to four versus three. ^
Resumo:
A Administração Financeira surge no início do século XIX juntamente com o movimento de consolidação das grandes empresas e a formação dos mercados nacionais americano enquanto que no Brasil os primeiros estudos ocorrem a partir da segunda metade do século XX. Desde entãoo país conseguiu consolidar alguns centros de excelência em pesquisa, formar grupo significativo de pesquisadores seniores e expandir as áreas de pesquisa no campo, contudo, ainda são poucos os trabalhos que buscam retratar as características da produtividade científica em Finanças. Buscando contribuir para a melhor compreensão do comportamento produtivo dessa área a presente pesquisa estuda sua produção científica, materializada na forma de artigos digitais, publicados em 24 conceituados periódicos nacionais classificados nos estratos Qualis/CAPES A2, B1 e B2 da Área de Administração, Ciências Contábeis e Turismo. Para tanto são aplicadas a Lei de Bradford, Lei do Elitismo de Price e Lei de Lotka. Pela Lei de Bradford são identificadas três zonas de produtividade sendo o núcleo formado por três revistas, estando uma delas classificada no estrato Qualis/CAPES B2, o que evidencia a limitação de um recorte tendo como único critério a classificação Qualis/CAPES. Para a Lei do Elitismo de Price, seja pela contagem direta ou completa, não identificamos comportamento de uma elite semelhante ao apontado pela teoria e que conta com grande número de autores com apenas uma publicação.Aplicando-se o modelo do Poder Inverso Generalizado, calculado por Mínimos Quadrados Ordinários (MQO), verificamos que produtividade dos pesquisadores, quando feita pela contagem direta, se adequa àquela definida pela Lei de Lotka ao nível de α = 0,01 de significância, contudo, pela contagem completa não podemos confirmar a hipótese de homogeneidade das distribuições, além do fato de que nas duas contagens a produtividade analisada pelo parâmetro n é maior que 2 e, portanto, a produtividade do pesquisadores de finanças é menor que a defendida pela teoria.
Resumo:
In this thesis work we develop a new generative model of social networks belonging to the family of Time Varying Networks. The importance of correctly modelling the mechanisms shaping the growth of a network and the dynamics of the edges activation and inactivation are of central importance in network science. Indeed, by means of generative models that mimic the real-world dynamics of contacts in social networks it is possible to forecast the outcome of an epidemic process, optimize the immunization campaign or optimally spread an information among individuals. This task can now be tackled taking advantage of the recent availability of large-scale, high-quality and time-resolved datasets. This wealth of digital data has allowed to deepen our understanding of the structure and properties of many real-world networks. Moreover, the empirical evidence of a temporal dimension in networks prompted the switch of paradigm from a static representation of graphs to a time varying one. In this work we exploit the Activity-Driven paradigm (a modeling tool belonging to the family of Time-Varying-Networks) to develop a general dynamical model that encodes fundamental mechanism shaping the social networks' topology and its temporal structure: social capital allocation and burstiness. The former accounts for the fact that individuals does not randomly invest their time and social interactions but they rather allocate it toward already known nodes of the network. The latter accounts for the heavy-tailed distributions of the inter-event time in social networks. We then empirically measure the properties of these two mechanisms from seven real-world datasets and develop a data-driven model, analytically solving it. We then check the results against numerical simulations and test our predictions with real-world datasets, finding a good agreement between the two. Moreover, we find and characterize a non-trivial interplay between burstiness and social capital allocation in the parameters phase space. Finally, we present a novel approach to the development of a complete generative model of Time-Varying-Networks. This model is inspired by the Kaufman's adjacent possible theory and is based on a generalized version of the Polya's urn. Remarkably, most of the complex and heterogeneous feature of real-world social networks are naturally reproduced by this dynamical model, together with many high-order topological properties (clustering coefficient, community structure etc.).
Resumo:
A Administração Financeira surge no início do século XIX juntamente com o movimento de consolidação das grandes empresas e a formação dos mercados nacionais americano enquanto que no Brasil os primeiros estudos ocorrem a partir da segunda metade do século XX. Desde entãoo país conseguiu consolidar alguns centros de excelência em pesquisa, formar grupo significativo de pesquisadores seniores e expandir as áreas de pesquisa no campo, contudo, ainda são poucos os trabalhos que buscam retratar as características da produtividade científica em Finanças. Buscando contribuir para a melhor compreensão do comportamento produtivo dessa área a presente pesquisa estuda sua produção científica, materializada na forma de artigos digitais, publicados em 24 conceituados periódicos nacionais classificados nos estratos Qualis/CAPES A2, B1 e B2 da Área de Administração, Ciências Contábeis e Turismo. Para tanto são aplicadas a Lei de Bradford, Lei do Elitismo de Price e Lei de Lotka. Pela Lei de Bradford são identificadas três zonas de produtividade sendo o núcleo formado por três revistas, estando uma delas classificada no estrato Qualis/CAPES B2, o que evidencia a limitação de um recorte tendo como único critério a classificação Qualis/CAPES. Para a Lei do Elitismo de Price, seja pela contagem direta ou completa, não identificamos comportamento de uma elite semelhante ao apontado pela teoria e que conta com grande número de autores com apenas uma publicação.Aplicando-se o modelo do Poder Inverso Generalizado, calculado por Mínimos Quadrados Ordinários (MQO), verificamos que produtividade dos pesquisadores, quando feita pela contagem direta, se adequa àquela definida pela Lei de Lotka ao nível de α = 0,01 de significância, contudo, pela contagem completa não podemos confirmar a hipótese de homogeneidade das distribuições, além do fato de que nas duas contagens a produtividade analisada pelo parâmetro n é maior que 2 e, portanto, a produtividade do pesquisadores de finanças é menor que a defendida pela teoria.
Resumo:
We developed a stochastic lattice model to describe the vector-borne disease (like yellow fever or dengue). The model is spatially structured and its dynamical rules take into account the diffusion of vectors. We consider a bipartite lattice, forming a sub-lattice of human and another occupied by mosquitoes. At each site of lattice we associate a stochastic variable that describes the occupation and the health state of a single individual (mosquito or human). The process of disease transmission in the human population follows a similar dynamic of the Susceptible-Infected-Recovered model (SIR), while the disease transmission in the mosquito population has an analogous dynamic of the Susceptible-Infected-Susceptible model (SIS) with mosquitos diffusion. The occurrence of an epidemic is directly related to the conditional probability of occurrence of infected mosquitoes (human) in the presence of susceptible human (mosquitoes) on neighborhood. The probability of diffusion of mosquitoes can facilitate the formation of pairs Susceptible-Infected enabling an increase in the size of the epidemic. Using an asynchronous dynamic update, we study the disease transmission in a population initially formed by susceptible individuals due to the introduction of a single mosquito (human) infected. We find that this model exhibits a continuous phase transition related to the existence or non-existence of an epidemic. By means of mean field approximations and Monte Carlo simulations we investigate the epidemic threshold and the phase diagram in terms of the diffusion probability and the infection probability.
Resumo:
We consider the motion of a diffusive population on a growing domain, 0 < x < L(t ), which is motivated by various applications in developmental biology. Individuals in the diffusing population, which could represent molecules or cells in a developmental scenario, undergo two different kinds of motion: (i) undirected movement, characterized by a diffusion coefficient, D, and (ii) directed movement, associated with the underlying domain growth. For a general class of problems with a reflecting boundary at x = 0, and an absorbing boundary at x = L(t ), we provide an exact solution to the partial differential equation describing the evolution of the population density function, C(x,t ). Using this solution, we derive an exact expression for the survival probability, S(t ), and an accurate approximation for the long-time limit, S = limt→∞ S(t ). Unlike traditional analyses on a nongrowing domain, where S ≡ 0, we show that domain growth leads to a very different situation where S can be positive. The theoretical tools developed and validated in this study allow us to distinguish between situations where the diffusive population reaches the moving boundary at x = L(t ) from other situations where the diffusive population never reaches the moving boundary at x = L(t ). Making this distinction is relevant to certain applications in developmental biology, such as the development of the enteric nervous system (ENS). All theoretical predictions are verified by implementing a discrete stochastic model.
Resumo:
This paper presents findings from a study of an organisationally mandated assimilation process of an enterprise-wide information system in a radiology practice in Australia. A number of interviews with radiologists, radiographers and administrative staff are used to explore the impact of institutional structures on the assimilation process. The case study develops an argument that culture within and outside the Australian Radiology Practice (ARP), social structures within the ARP and organisational-level management mandates have impacted on the assimilation process. The study develops a theoretical framework that integrates elements of social actor theory (Lamb & Kling, 2003) to provide a more fine-grained analysis concentrating on the relationship among the radiology practitioners, the technology (an enterprise-wide Health Information System) and a larger social milieu surrounding its use. This study offers several theoretical and practical implications for technology assimilation in the health and radiology industry regarding the important roles social interactions, individual self-perceptions, organisational mandates and policies can play in assimilating new ICTs.