997 resultados para Diffusion phenomena


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The short-range diffusion phenomenon (Snoek Effect) was investigated by mechanical spectroscopy measurements between 300 K and 650 K, in a polycrystalline niobium sample, containing oxygen and nitrogen, using a torsion pendulum. Experimental spectra of anelastic relaxation were obtained under three conditions: as-received sample; annealed sample and subsequently annealed in an oxygen atmosphere for three hours at 1170 K in partial pressure of 5°10 -5mbar. The experimental spectra obtained were decomposed in elementary Debye peaks and the anelastic relaxation processes were identified. With anelastic relaxation parameters and the lattice parameters, the interstitial diffusion coefficients of the oxygen and nitrogen in niobium were calculated for each kind of preferential occupation (octahedral and tetrahedral). The results were compared with the literature data, and confirmed that the best adjustment is for the preferential occupation octahedral model for low concentrations of interstitial solutes, but at higher concentration of oxygen were observed deviations of experimental data for the interstitial diffusion coefficients of oxygen in niobium when compared with the literature data, this could be related to the possible occurrence of a double occupation of interstitial sites in the niobium lattice by oxygen interstitials. © (2010) Trans Tech Publications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Clay mineral-rich sedimentary formations are currently under investigation to evaluate their potential use as host formations for installation of deep underground disposal facilities for radioactive waste (e.g. Boom Clay (BE), Opalinus Clay (CH), Callovo-Oxfordian argillite (FR)). The ultimate safety of the corresponding repository concepts depends largely on the capacity of the host formation to limit the flux towards the biosphere of radionuclides (RN) contained in the waste to acceptably low levels. Data for diffusion-driven transfer in these formations shows extreme differences in the measured or modelled behaviour for various radionuclides, e. g. between halogen RN (Cl-36, I-129) and actinides (U-238,U-235, Np-237, Th-232, etc.), which result from major differences between RN of the effects on transport of two phenomena: diffusion and sorption. This paper describes recent research aimed at improving understanding of these two phenomena, focusing on the results of studies carried out during the EC Funmig IP on clayrocks from the above three formations and from the Boda formation (HU). Project results regarding phenomena governing water, cation and anion distribution and mobility in the pore volumes influenced by the negatively-charged surfaces of clay minerals show a convergence of the modelling results for behaviour at the molecular scale and descriptions based on electrical double layer models. Transport models exist which couple ion distribution relative to the clay-solution interface and differentiated diffusive characteristics. These codes are able to reproduce the main trends in behaviour observed experimentally, e.g. D-e(anion) < D-e(HTO) < D-e(cation) and D-e(anion) variations as a function of ionic strength and material density. These trends are also well-explained by models of transport through ideal porous matrices made up of a charged surface material. Experimental validation of these models is good as regards monovalent alkaline cations, in progress for divalent electrostatically-interacting cations (e.g. Sr2+) and still relatively poor for 'strongly sorbing', high K-d cations. Funmig results have clarified understanding of how clayrock mineral composition, and the corresponding organisation of mineral grain assemblages and their associated porosity, can affect mobile solute (anions, HTO) diffusion at different scales (mm to geological formation). In particular, advances made in the capacity to map clayrock mineral grain-porosity organisation at high resolution provide additional elements for understanding diffusion anisotropy and for relating diffusion characteristics measured at different scales. On the other hand, the results of studies focusing on evaluating the potential effects of heterogeneity on mobile species diffusion at the formation scale tend to show that there is a minimal effect when compared to a homogeneous property model. Finally, the results of a natural tracer-based study carried out on the Opalinus Clay formation increase confidence in the use of diffusion parameters measured on laboratory scale samples for predicting diffusion over geological time-space scales. Much effort was placed on improving understanding of coupled sorption-diffusion phenomena for sorbing cations in clayrocks. Results regarding sorption equilibrium in dispersed and compacted materials for weakly to moderately sorbing cations (Sr2+, Cs+, Co2+) tend to show that the same sorption model probably holds in both systems. It was not possible to demonstrate this for highly sorbing elements such as Eu(III) because of the extremely long times needed to reach equilibrium conditions, but there does not seem to be any clear reason why such elements should not have similar behaviour. Diffusion experiments carried out with Sr2+, Cs+ and Eu(III) on all of the clayrocks gave mixed results and tend to show that coupled diffusion-sorption migration is much more complex than expected, leading generally to greater mobility than that predicted by coupling a batch-determined K-d and Ficks law based on the diffusion behaviour of HTO. If the K-d measured on equivalent dispersed systems holds as was shown to be the case for Sr, Cs (and probably Co) for Opalinus Clay, these results indicate that these cations have a D-e value higher than HTO (up to a factor of 10 for Cs+). Results are as yet very limited for very moderate to strongly sorbing species (e.g. Co(II), Eu(III), Cu(II)) because of their very slow transfer characteristics. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, based on the holographic techniques, we explore the hydrodynamics of charge diffusion phenomena in non commutative N = 4 SYM plasma at strong coupling. In our analysis, we compute the R charge diffusion rates both along commutative as well as the non commutative coordinates of the brane. It turns out that unlike the case for the shear viscosity, the DC conductivity along the non commutative direction of the brane differs significantly from that of its cousin corresponding to the commutative direction of the brane. Such a discrepancy however smoothly goes away in the limit of the vanishing non commutativity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microscopic properties of a two-dimensional model dense fluid of Lennard-Jones disks have been studied using the so-called "molecular dynamics" method. Analyses of the computer-generated simulation data in terms of "conventional" thermodynamic and distribution functions verify the physical validity of the model and the simulation technique.

The radial distribution functions g(r) computed from the simulation data exhibit several subsidiary features rather similar to those appearing in some of the g(r) functions obtained by X-ray and thermal neutron diffraction measurements on real simple liquids. In the case of the model fluid, these "anomalous" features are thought to reflect the existence of two or more alternative configurations for local ordering.

Graphical display techniques have been used extensively to provide some intuitive insight into the various microscopic phenomena occurring in the model. For example, "snapshots" of the instantaneous system configurations for different times show that the "excess" area allotted to the fluid is collected into relatively large, irregular, and surprisingly persistent "holes". Plots of the particle trajectories over intervals of 2.0 to 6.0 x 10-12 sec indicate that the mechanism for diffusion in the dense model fluid is "cooperative" in nature, and that extensive diffusive migration is generally restricted to groups of particles in the vicinity of a hole.

A quantitative analysis of diffusion in the model fluid shows that the cooperative mechanism is not inconsistent with the statistical predictions of existing theories of singlet, or self-diffusion in liquids. The relative diffusion of proximate particles is, however, found to be retarded by short-range dynamic correlations associated with the cooperative mechanism--a result of some importance from the standpoint of bimolecular reaction kinetics in solution.

A new, semi-empirical treatment for relative diffusion in liquids is developed, and is shown to reproduce the relative diffusion phenomena observed in the model fluid quite accurately. When incorporated into the standard Smoluchowski theory of diffusion-controlled reaction kinetics, the more exact treatment of relative diffusion is found to lower the predicted rate of reaction appreciably.

Finally, an entirely new approach to an understanding of the liquid state is suggested. Our experience in dealing with the simulation data--and especially, graphical displays of the simulation data--has led us to conclude that many of the more frustrating scientific problems involving the liquid state would be simplified considerably, were it possible to describe the microscopic structures characteristic of liquids in a concise and precise manner. To this end, we propose that the development of a formal language of partially-ordered structures be investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this review paper is to present experimental methodologies and the mathematical approaches used to determine effective diffusivities of solutes in food materials. The paper commences by describing the diffusion phenomena related to solute mass transfer in foods and effective diffusivities. It then focuses on the mathematical formulation for the calculation of effective diffusivities considering different diffusion models based on Fick's second law of diffusion. Finally, experimental considerations for effective diffusivity determination are elucidated primarily based on the acquirement of a series of solute content versus time curves appropriate to the equation model chosen. Different factors contributing to the determination of the effective diffusivities such as the structure of food material, temperature, diffusion solvent, agitation, sampling, concentration and different techniques used are considered. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the advance of mathematical methods throughout the centuries, in particular with respect to the differential calculus, the notion of fractional derivative emerged with Leibniz and later developed by several well known scientists. Today that formalism is well used in the study of diffusion phenomena among other areas. We extend the fractional indices to matricial indices and develop a formalism to handle this generalized derivative, as well as other operators, functions and functionals in mathematical physics, originally defined for natural indices. Here we only consider 2x2 hermitian and anti-hermitian matrices. These matrices are associated to the well known Pauli matrices and Hamilton's quaternions. Applications with mathematical physics functions are presented

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents a numerical study of reaction and diffusion phenomena in wall-coated heat-exchanger microreactors. Specifically, the interactions between an endothermic and exothermic catalyst layer separated by an impermeable wall is studied to understand the inherent behavior of the system. Two modeling approaches are presented, the first under the assumption of a constant thermal gradient and neglecting heat of reaction and the second considering both catalyst layers and reaction heat. Both studies found that thicker, more thermally insulating catalyst layers increase the effectiveness of the exothermic reaction by allowing for accumulation of reaction heat while thinner catalyst layers for the endothermic catalyst allow for direct access of the reactant to higher wall temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diffusion controls the gaseous transport process in soils when advective transport is almost null. Knowledge of the soil structure and pore connectivity are critical issues to understand and modelling soil aeration, sequestration or emission of greenhouse gasses, volatilization of volatile organic chemicals among other phenomena. In the last decades these issues increased our attention as scientist have realize that soil is one of the most complex materials on the earth, within which many biological, physical and chemical processes that support life and affect climate change take place. A quantitative and explicit characterization of soil structure is difficult because of the complexity of the pore space. This is the main reason why most theoretical approaches to soil porosity are idealizations to simplify this system. In this work, we proposed a more realistic attempt to capture the complexity of the system developing a model that considers the size and location of pores in order to relate them into a network. In the model we interpret porous soils as heterogeneous networks where pores are represented by nodes, characterized by their size and spatial location, and the links representing flows between them. In this work we perform an analysis of the community structure of porous media of soils represented as networks. For different real soils samples, modelled as heterogeneous complex networks, spatial communities of pores have been detected depending on the values of the parameters of the porous soil model used. These types of models are named as Heterogeneous Preferential Attachment (HPA). Developing an exhaustive analysis of the model, analytical solutions are obtained for the degree densities and degree distribution of the pore networks generated by the model in the thermodynamic limit and shown that the networks exhibit similar properties to those observed in other complex networks. With the aim to study in more detail topological properties of these networks, the presence of soil pore community structures is studied. The detection of communities of pores, as groups densely connected with only sparser connections between groups, could contribute to understand the mechanisms of the diffusion phenomena in soils.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil is well recognized as a highly complex system. The interaction and coupled physical, chemical, and biological processes and phenomena occurring in the soil environment at different spatial and temporal scales are the main reasons for such complexity. There is a need for appropriate methodologies to characterize soil porous systems with an interdisciplinary character. Four different real soil samples, presenting different textures, have been modeled as heterogeneous complex networks, applying a model known as the heterogeneous preferential attachment. An analytical study of the degree distributions in the soil model shows a multiscaling behavior in the connectivity degrees, leaving an empirically testable signature of heterogeneity in the topology of soil pore networks. We also show that the power-law scaling in the degree distribution is a robust trait of the soil model. Last, the detection of spatial pore communities, as densely connected groups with only sparser connections between them, has been studied for the first time in these soil networks. Our results show that the presence of these communities depends on the parameter values used to construct the network. These findings could contribute to understanding the mechanisms of the diffusion phenomena in soils, such as gas and water diffusion, development and dynamics of microorganisms, among others.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The literature relating to the principles and practice of drying of materials, particularly those susceptible to thermal degradation or undesirable loss of volatile components, has been reviewed. Single droplets of heat-sensitive materials were dried whilst suspended in a horizontal wind tunnel from a specially-designed, rotating thermocouple which enabled direct observation of drying behaviour and continuous measurement of droplet temperature as drying progressed. The effects of drying air temperature and initial solids concentration on the potency of various antibiotics, viz. ampicillin, chloramphenicol, oxytetracycline, streptomycin and tetracycline, were assessed using a modified Drug Sensitivity Testing technique. Only ampicillin was heat-sensitive at temperatures above 100°C, e.g. at an air temperature of 115°C its zone diameter was reduced from 100% to 45%. Selected enzymes, viz. dextran sucrase and invertase, were also dried and their residual activities determined by High Performance Liquid Chromatography. The residual activity of dextran sucrase was rapidly reduced at temperatures above 65°C, and the residual activity of invertase reduced rapidly at temperatures above 65°C; but drying with short residence times will retain most of its activity. The performance of various skin-forming encapsulants, viz. rice and wheat starch, dextrin, coffee, skim milk, fructose, gelatine 60 and 150 Bloom, and gum arabic, was evaluated to determine their capabilities for retention of ethanol as a model volatile, under different operating conditions. The effects of initial solids concentration, air velocity and temperature were monitored for each material tested. Ethanol content was analysed by Gas Liquid Chromatography and in some cases dried crusts were removed for examination. Volatiles retention was concluded to depend in all cases upon the rate and nature of the skin formation and selective diffusion phenomena. The results provided further insight into the inter-relationship between temperature, residence time and thermal degradation of heat-sensitive materials. They should also assist in selection of the preferred dryer for such materials, and of the operating parameter to enable maximum retention of the required physico-chemical characteristics in the dried materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The random walk models with temporal correlation (i.e. memory) are of interest in the study of anomalous diffusion phenomena. The random walk and its generalizations are of prominent place in the characterization of various physical, chemical and biological phenomena. The temporal correlation is an essential feature in anomalous diffusion models. These temporal long-range correlation models can be called non-Markovian models, otherwise, the short-range time correlation counterparts are Markovian ones. Within this context, we reviewed the existing models with temporal correlation, i.e. entire memory, the elephant walk model, or partial memory, alzheimer walk model and walk model with a gaussian memory with profile. It is noticed that these models shows superdiffusion with a Hurst exponent H > 1/2. We study in this work a superdiffusive random walk model with exponentially decaying memory. This seems to be a self-contradictory statement, since it is well known that random walks with exponentially decaying temporal correlations can be approximated arbitrarily well by Markov processes and that central limit theorems prohibit superdiffusion for Markovian walks with finite variance of step sizes. The solution to the apparent paradox is that the model is genuinely non-Markovian, due to a time-dependent decay constant associated with the exponential behavior. In the end, we discuss ideas for future investigations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The conservation and valorisation of cultural heritage is of fundamental importance for our society, since it is witness to the legacies of human societies. In the case of metallic artefacts, because corrosion is a never-ending problem, the correct strategies for their cleaning and preservation must be chosen. Thus, the aim of this project was the development of protocols for cleaning archaeological copper artefacts by laser and plasma cleaning, since they allow the treatment of artefacts in a controlled and selective manner. Additionally, electrochemical characterisation of the artificial patinas was performed in order to obtain information on the protective properties of the corrosion layers. Reference copper samples with different artificial corrosion layers were used to evaluate the tested parameters. Laser cleaning tests resulted in partial removal of the corrosion products, but the lasermaterial interactions resulted in melting of the desired corrosion layers. The main obstacle for this process is that the materials that must be preserved show lower ablation thresholds than the undesired layers, which makes the proper elimination of dangerous corrosion products very difficult without damaging the artefacts. Different protocols should be developed for different patinas, and real artefacts should be characterised previous to any treatment to determine the best course of action. Low pressure hydrogen plasma cleaning treatments were performed on two kinds of patinas. In both cases the corrosion layers were partially removed. The total removal of the undesired corrosion products can probably be achieved by increasing the treatment time or applied power, or increasing the hydrogen pressure. Since the process is non-invasive and does not modify the bulk material, modifying the cleaning parameters is easy. EIS measurements show that, for the artificial patinas, the impedance increases while the patina is growing on the surface and then drops, probably due to diffusion reactions and a slow dissolution of copper. It appears from these results that the dissolution of copper is heavily influenced by diffusion phenomena and the corrosion product film porosity. Both techniques show good results for cleaning, as long as the proper parameters are used. These depend on the nature of the artefact and the corrosion layers that are found on its surface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the exclusion-process literature, mean-field models are often derived by assuming that the occupancy status of lattice sites is independent. Although this assumption is questionable, it is the foundation of many mean-field models. In this work we develop methods to relax the independence assumption for a range of discrete exclusion process-based mechanisms motivated by applications from cell biology. Previous investigations that focussed on relaxing the independence assumption have been limited to studying initially-uniform populations and ignored any spatial variations. By ignoring spatial variations these previous studies were greatly simplified due to translational invariance of the lattice. These previous corrected mean-field models could not be applied to many important problems in cell biology such as invasion waves of cells that are characterised by moving fronts. Here we propose generalised methods that relax the independence assumption for spatially inhomogeneous problems, leading to corrected mean-field descriptions of a range of exclusion process-based models that incorporate (i) unbiased motility, (ii) biased motility, and (iii) unbiased motility with agent birth and death processes. The corrected mean-field models derived here are applicable to spatially variable processes including invasion wave type problems. We show that there can be large deviations between simulation data and traditional mean-field models based on invoking the independence assumption. Furthermore, we show that the corrected mean-field models give an improved match to the simulation data in all cases considered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A discrete agent-based model on a periodic lattice of arbitrary dimension is considered. Agents move to nearest-neighbor sites by a motility mechanism accounting for general interactions, which may include volume exclusion. The partial differential equation describing the average occupancy of the agent population is derived systematically. A diffusion equation arises for all types of interactions and is nonlinear except for the simplest interactions. In addition, multiple species of interacting subpopulations give rise to an advection-diffusion equation for each subpopulation. This work extends and generalizes previous specific results, providing a construction method for determining the transport coefficients in terms of a single conditional transition probability, which depends on the occupancy of sites in an influence region. These coefficients characterize the diffusion of agents in a crowded environment in biological and physical processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many meteorological phenomena occur at different locations simultaneously. These phenomena vary temporally and spatially. It is essential to track these multiple phenomena for accurate weather prediction. Efficient analysis require high-resolution simulations which can be conducted by introducing finer resolution nested simulations, nests at the locations of these phenomena. Simultaneous tracking of these multiple weather phenomena requires simultaneous execution of the nests on different subsets of the maximum number of processors for the main weather simulation. Dynamic variation in the number of these nests require efficient processor reallocation strategies. In this paper, we have developed strategies for efficient partitioning and repartitioning of the nests among the processors. As a case study, we consider an application of tracking multiple organized cloud clusters in tropical weather systems. We first present a parallel data analysis algorithm to detect such clouds. We have developed a tree-based hierarchical diffusion method which reallocates processors for the nests such that the redistribution cost is less. We achieve this by a novel tree reorganization approach. We show that our approach exhibits up to 25% lower redistribution cost and 53% lesser hop-bytes than the processor reallocation strategy that does not consider the existing processor allocation.