937 resultados para Diffuse reflectance infrared Fourier transform


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Co-electrolysis of carbon dioxide and steam has been shown to be an efficient way to produce syngas, however further optimisation requires detailed understanding of the complex reactions, transport processes and degradation mechanisms occurring in the solid oxide cell (SOC) during operation. Whilst electrochemical measurements are currently conducted in situ, many analytical techniques can only be used ex situ and may even be destructive to the cell (e.g. SEM imaging of microstructure). In order to fully understand and characterise co-electrolysis, in situ monitoring of the reactants, products and SOC is necessary. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) is ideal for in situ monitoring of co-electrolysis as both gaseous and adsorbed CO and CO2 species can be detected, however it has previously not been used for this purpose. The challenges of designing an experimental rig which allows optical access alongside electrochemical measurements at high temperature and operates in a dual atmosphere are discussed. The rig developed has thus far been used for symmetric cell testing at temperatures from 450[degree]C to 600[degree]C. Under a CO atmosphere, significant changes in spectra were observed even over a simple Au|10Sc1CeSZ|Au SOC. The changes relate to a combination of CO oxidation, the water gas shift reaction and carbonate formation and decomposition processes, with the dominant process being both potential and temperature dependent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A transesterificação metílica em meio homogêneo é catalisada por bases, tais como hidróxidos e alcóxidos de sódio ou potássio e se processa em baixa temperatura de reação, mesmo em escala industrial. A utilização de catalisadores formados por sólidos básicos aparece como uma alternativa promissora aos processos homogêneos convencionais, tendo em vista as inúmeras vantagens como a redução da ocorrência das reações indesejáveis de saponificação e redução de custos dos processos pela diminuição do número de operações associadas. Em estudos anteriores realizados pelo grupo, catalisadores a base de Mg/La com diferentes composições químicas (9:1, 1:1 e 1:9) mostraram-se promissores para a obtenção de ésteres metílicos via reação de transesterificação, porém não foi possível fazer uma correlação entre atividade catalítica e as propriedades físico-químicas quando toda a série foi considerada. Assim, a realização de um estudo de caráter fundamental, baseado em reações modelo e uso de moléculas sonda, permite avançar no entendimento das propriedades de superfície destes catalisadores. Portanto, o presente trabalho estuda a reação entre metanol e acetato de etila em catalisadores a base de Mg/La utilizando espectroscopia de reflectância difusa no infravermelho com transformada de Fourier (DRIFTS) acoplada a espectrometria de massas (MS) identificando os intermediários e produtos formados para determinar a rota reacional. As análises de difração de raios X mostram que os precursores são predominantemente compostos por carbonatos hidratados de magnésio (Mg/La 1:1 e 9:1) e de lantânio (Mg/La 1:9). Os perfis de decomposição térmica e difratogramas de raios X obtidos a partir de tratamento térmico in situ indicaram que estes carbonatos se decompõem apenas a partir de 750 C. As análises de Dessorção a Temperatura Programada realizadas com moléculas sonda, metanol e acetato de etila, mostraram a adsorção em maior quantidade do metanol independente da composição química do sólido. A partir dos resultados obtidos por DRIFTS-MS foi proposta uma rota reacional para a reação de transesterificação do acetato de etila e metanol, que ocorre via adsorção do metanol e do acetato de etila na superfície do catalisador, seguida da formação de um intermediário tetraédrico formado pelas moléculas adsorvidas, que sofre um rearranjo formando etanol, acetato de metila, acetona e metano. Simultaneamente, parte do metanol adsorvido como metoxi monodentado é desidrogenado formando formiatos que são dessorvidos na forma de formaldeído e decompostos formando CO2 e H2

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comprehensive study of the low-temperature oxidation of CO was conducted over Pd/TiO2, Pd/CeO2, and Pd/CeO2-TiO2 pretreated by a series of calcination and reduction processes. The catalysts were characterized by N-2 adsorption, XRD, H-2 chemisorption, and diffuse-reflectance infrared Fourier transform spectroscopy. The results indicated that Pd/CeO2-TiO2 has the highest activity among these catalysts, whether in the calcined state or in the reduced state. The activity of all of the catalysts can be improved significantly by the pre-reduction, and it seems that the reduction at low temperature (LTR. 150 degrees C) is more effective than that at high temperature (HTR, 500 degrees C), especially for Pd/CeO2 and Pd/TiO2. The catalysts with various supports and pretreatments are also different in the reaction mechanisms for CO oxidation at low temperature. Over Pd/TiO2, the reaction may proceed through a surface reaction between the weakly adsorbed CO and oxygen (Langmuir-Hinshelwood). For Ce-containing catalysts, however, an alteration of reaction mechanism with temperature and the involvement of the oxygen activation at different sites were observed, and the light-off profiles of the calcined Pd/CeO2 and Pd/CeOi-TiO2 show a distortion before CO conversion achieves 100%. At low temperature, CO oxidation proceeds mainly via the reaction between the adsorbed CO on Pd-0 sites and the lattice oxygen of surface CeO2 at the Pd-Ce interface, whereas at high temperature it proceeds via the reaction between the adsorbed CO and oxygen. The high activity of Pd/CeO2-TiO2 for the low-temperature CO oxidation was probably due to the enhancements of both CO activation, caused by the facilitated reduction of Pd2+ to Pd-0, and oxygen activation, through the improvement of the surface oxygen supply and the oxygen vacancies formation. The reduction pretreatment enhances metal-support interactions and oxygen vacancy formation and hence improves the activity of CO oxidation. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the preparation of silica-supported nickel oxide from nickel nitrate impregnation and drying, the replacement of the traditional air calcination step by a thermal treatment in 1% NO/Ar prevents agglomeration, resulting in highly dispersed NiO. The mechanism by which NO prevents agglomeration was investigated by using combined in situ diffuse reflectance infrared fourier transform (DRIFT) spectroscopy and mass spectrometry (MS). After impregnation and drying, a supported nickel hydroxynitrate phase with composition Ni(3)(NO(3))(2)(OH)(4) had been formed. Comparison of the evolution of the decomposition gases during the thermal decomposition of Ni(3)(NO(3))(2)(OH)(4) in labeled and unlabeled NO and O(2) revealed that NO scavenges oxygen radicals, forming NO(2). The DRIFT spectra revealed that the surface speciation evolved differently in the presence of NO as compared with in O(2) or Ar. It is proposed that oxygen scavenging by NO depletes the Ni(3)(NO(3))(2)(OH)(4) phase of nitrate groups, creating nucleation sites for the formation of NiO, which leads to very small (similar to 4 nm) NiO particles and prevents agglomeration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An inverse CeO2/CuO catalyst has been investigated by operando steady-state isotopic transient kinetic analysis (SSITKA) in combination with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) under 3% CO +3% H2O reactant mixture at 473 K with the aim of determining intermediates involved in the water gas shift reaction at relatively low temperatures. Among the various species detected in the infrared spectra which may be involved in the reaction, i.e. formates, copper carbonyls and carbonates, a particular type of carbonate species is identified as a reaction intermediate on the basis of detailed analysis of the spectra during isotopic exchange in comparison with the change in the corresponding isotopically labelled CO2 product. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High temperature co-electrolysis of steam and carbon dioxide using a solid oxide cell (SOC) has been shown to be an efficient route to produce syngas (CO + H-2), which can then be converted to synthetic fuel. Optimization of co-electrolysis requires detailed understanding of the complex reactions, transport processes and degradation mechanisms occurring in the SOC during operation. Thermal imaging, Raman spectroscopy and Diffuse Reflectance Infrared Fourier Transform Spectroscopy are being developed to probe in-situ both the reactions occurring during operation and any associated changes within the structure of the electrodes and electrolyte. Here we discuss the challenges in designing experimental apparatus suitable for high temperature operation with optical spectroscopic access to the areas of the SOC that are of interest. In particular, issues with sealing, temperature gradients, signal strength and cell configuration are discussed and final designs are presented. Preliminary results obtained during co-electrolysis operation are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline LiH was studied in situ using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy to investigate the effect water vapour has on the rate of production of the corrosion products, particularly LiOH. The reaction rate of the formation of surface LiOH was monitored by measurement of the hydroxyl (OH) band at 3676 cm(-1). The initial hydrolysis rate of LiH exposed to water vapour at 50% relative humidity was found to be almost two times faster than LiH exposed to water vapour at 2% relative humidity. The hydrolysis rate was shown to be initially very rapid followed by a much slower, almost linear rate. The change in hydrolysis rate was attributed to the formation of a coherent layer of LiOH on the LiH surface. Exposure to lower levels of water vapour appeared to result in the formation of a more coherent corrosion product, resulting in effective passivation of the surface to further attack from water. Crown Copyright (c) 2007 Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the preparation of thin titanium films via sol-gel route and their subsequent chemical modification by anchoring with 2-aminothiazole ligand and Pd(II) ion sorption, aiming to maximize the photocatalytic activity. The material was characterized by diffuse reflectance infrared Fourier transform spectroscopy, ultraviolet and visible spectrometry, X-ray diffractometry, and scanning electronic microscopy. The amount of palladium adsorbed on the film's surface, determined by graphite furnace atomic absorption spectrometry, showed a value of 2.69 x 10(16) atoms CM-2. The photocatalytic tests indicated that the functionalization with 2-aminothiazole and the adsorption of palladium (II) were determinants in the semiconductor's enhanced photocatalytic activity. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive pure and manganese-doped (5% and 10 at.%) ceria nanosized powders were prepared by the polymeric precursor technique. Physical properties of powder materials were studied by X-ray diffraction, nitrogen adsorption, and diffuse reflectance infrared Fourier transform spectroscopy. Characterization of powder compacts after fast firing at 1200 degrees C for 5 min was carried out by scanning electron microscopy and impedance spectroscopy measurements. The bulk apparent density of sintered pellets was determined for pellets of different compositions sintered at 1200 degrees C. A gradual decrease of the particle size occurs with increasing doping content. Relatively high values of apparent density were obtained after fast firing doped specimens at 1200 degrees C. DRIFT spectra evidence that a fraction of Mn ions was segregated onto particles surface. The electrical resistivity of sintered pellets reveals different mechanisms of conduction depending on the Mn content. (C) 2005 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a bioactive zirconia-toughened alumina (ZTA) composite was developed for orthopedic applications. This composite was obtained by slip casting of suspension powder mixtures.Biomimetic processes were used to grow a bone-like apatite layer on composite substrates using sodium silicate solution as a nucleating agent and simulated body fluids. The composites, with or without coating, were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS), and their apparent density was determined by the Archimedes method. The composites obtained by this process possessed the expected stiffness and dimensions and their density values were similar to those of the composite's theoretical density (98.8%TD). The morphology of the hydroxyapatite formed on the composite surface was homogeneous and composed of small globules, characterizing a carbonated hydroxyapatite. The results of the tests indicated that the method employed to produce the composite and its coating was efficient under the conditions of this study. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The commercial pure titanium (cp-Ti) is currently being used with great success in dental implants. In this work we investigate how the cp-Ti implants can be improved by modifying the metal surface morphology, on which a synthetic material with properties similar to that of the inorganic part of the bone, is deposited to facilitate the bone/implant bonding. This synthetic material is the hydroxyapatite, HA, a calcium-phosphate ceramic. The surface modification consists in the application of a titanium oxide (TiO2) layer, using the thermal aspersion - plasma spray technique, with posterior deposition of HA, using the biomimetic method. The X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) and Diffuse Reflectance Infrared Fourier Transform (DRIFT) techniques have been used for characterizing phases, microstructures and morphologies of the coatings. The TiO2 deposit shows a mixture of anatase, rutilo and TiO2-x phases, and a porous and laminar morphology, which facilitate the HA deposition. After the thermal treatment, the previously amorphous structured HA coating, shows a porous homogeneous morphology with particle size of about 2-2.5 μm, with crystallinity and composition similar to that of the biological HA.