974 resultados para Didactic Industrial Systems
Resumo:
This work presents a simplified architecture of a neurofuzzy controller for general purpose applications that tries to minimize the processing used in the several stages of hazy modeling of systems. The basic procedures of fuzzification and defuzzification are simplified to the maximum while the inference procedures are computed in a private way. The simplified architecture allows a fast and easy configuration of the neurofuzzy controller and the structuring rules that define the control actions is automatic. Th controller's Limits and performance are standardized and the control actions are previously calculated. For application, the industrial systems of fluid flow control will be considered.
Resumo:
This article investigates the determinants of foreign direct investment (FDI)location across Italian provinces. Specifically it examines the relationship between industry- specific local industrial systems and the location of inward FDI. This extends previous analysis beyond the mere density of activity, to illustrate the importance of the specific nature of agglomerations in attracting inward investment. The article develops a model of FDI location choice using a unique FDI database stratified by industry and province. The results also suggest that the importance of agglomeration differs between industries, and offers some explanation for this.
Resumo:
This work presents a computational, called MOMENTS, code developed to be used in process control to determine a characteristic transfer function to industrial units when radiotracer techniques were been applied to study the unit´s performance. The methodology is based on the measuring the residence time distribution function (RTD) and calculate the first and second temporal moments of the tracer data obtained by two scintillators detectors NaI positioned to register a complete tracer movement inside the unit. Non linear regression technique has been used to fit various mathematical models and a statistical test was used to select the best result to the transfer function. Using the code MOMENTS, twelve different models can be used to fit a curve and calculate technical parameters to the unit.
Resumo:
The interaction between industry and university is often discussed. Industry participants feel they do not have enough time to spend with academics because of tight deadlines to achieve your goals. The other hand, professors and his students do not have availability and resources for responding quickly to industry activities. Both sides recognize the associated problems and feel the consequences of various forms. One way to reduce the distance between them is to provide industrial labs that resemble the factory floor at the university. Thus not only students may work on a real technological base, but also the industry's problems can be brought to the university laboratory. To ensure that relevant industrial problems will be studied, the industry needs help in the formulation of the problem being researched. The graduate program of Automation and Control Engineering from UNESP Sorocaba is aimed at training human resources with skills in automation and control activities related to the development of automatic control processes, integrating electronic commands, intelligent manufacturing and industrial robotics. In order to achieve its objectives, one of the pillars of the university consists of a wide range of modern equipments and software for industrial automation, which allows the circuit assembly from most primitive until configuration and programming of a complex system of integrated manufacturing. This paper describes industrial automation equipments and laboratory structure offered to students of Control and Automation Engineering graduate program at UNESP Sorocaba as alternative to close technologies and real problems on the job until academic world. The strategic is to do students understand theory and operations in robotic and industrial automation by means to manipulating real production systems locate at university
Resumo:
Concern about the growing demand of food and fuel has focused the attention on countries with conditions to provide for global requirements. Also, the build-up of an environmental awareness has compelled several governments to implement programs for the addition of biofuels to oil derivatives. Considering their relevance as world and South American producers, this study makes a characterization of the sucro-energetic sectors of Brazil and Colombia, based on a view of agro-industrial systems, industrial organization and transaction cost economy. The approach followed considered of a secondary information survey and in-depth interviews. The main differences found are centered on institutional development level and production volumes. However, the use of the same raw material, sugarcane, trade opening policies, cultural approaches and regional integration, are factors that could generate links of commercial exchange and technological cooperation between the two countries.
Resumo:
This paper presents a coordination approach to maximize the total profit of wind power systems coordinated with concentrated solar power systems, having molten-salt thermal energy storage. Both systems are effectively handled by mixed-integer linear programming in the approach, allowing enhancement on the operational during non-insolation periods. Transmission grid constraints and technical operating constraints on both systems are modeled to enable a true management support for the integration of renewable energy sources in day-ahead electricity markets. A representative case study based on real systems is considered to demonstrate the effectiveness of the proposed approach. © IFIP International Federation for Information Processing 2015.
Resumo:
Advances in technology have produced more and more intricate industrial systems, such as nuclear power plants, chemical centers and petroleum platforms. Such complex plants exhibit multiple interactions among smaller units and human operators, rising potentially disastrous failure, which can propagate across subsystem boundaries. This paper analyzes industrial accident data-series in the perspective of statistical physics and dynamical systems. Global data is collected from the Emergency Events Database (EM-DAT) during the time period from year 1903 up to 2012. The statistical distributions of the number of fatalities caused by industrial accidents reveal Power Law (PL) behavior. We analyze the evolution of the PL parameters over time and observe a remarkable increment in the PL exponent during the last years. PL behavior allows prediction by extrapolation over a wide range of scales. In a complementary line of thought, we compare the data using appropriate indices and use different visualization techniques to correlate and to extract relationships among industrial accident events. This study contributes to better understand the complexity of modern industrial accidents and their ruling principles.
Resumo:
Systems suppliers are focal actors in mechanical engineering supply chains, in between general contractors and component suppliers. This research concentrates on the systems suppliers’ competitive flexibility, as a competitive advantage that the systems supplier gains from independence from the competitive forces of the market. The aim is to study the roles that power, dependence relations, social capital, and interorganizational learning have on the competitive flexibility. Research on this particular theme is scarce thus far. The research method applied here is the inductive multiple case study. Interviews from four case companies were used as main source of the qualitative data. The literature review presents previous literature on subcontracting, supply chain flexibility, supply chain relationships, social capital and interorganizational learning. The result of this study are seven propositions and consequently a model on the effects that the dominance of sales of few customers, power of competitors, significance of the manufactured system in the end product, professionalism in procurement and the significance of brand products in the business have on the competitive flexibility. These relationships are moderated by either social capital or interorganizational learning. The main results obtained from this study revolve around social capital and interorganizational learning, which have beneficial effects on systems suppliers’ competitive flexibility, by moderating the effects of other constructs of the model. Further research on this topic should include quantitative research to provide the extent to which the results can be reliably generalized. Also each construct of the model gives possible focus for more thorough research.
Resumo:
Technological evolution of industrial automation systems has been guided by the dillema between flexibilization and confiability on the integration between devices and control supervisory systems. However, there are few supervisory systems whose attributions can also comprehend the teaching of the communication process that happens behind this technological integration, where those which are available are little flexible about accessibility and reach of patterns. On this context, we present the first module of a didactic supervisory system, accessible through Web, applied on the teaching of the main fieldbus protocols. The application owns a module that automatically discovers the network topology being used and allows students and professionals of automation to obtain a more practical knowledgment by exchanging messages with a PLC, allowing those who are involved to know with more details the communication process of an automation supervisory system. By the fact of being available through Web, the system will allow a remote access to the PLC, comprehending a larger number of users. This first module is focused on the Modbus protocol (TCP and RTU/ASCII)
Resumo:
This paper describes the implementation of a multi-interface module (I2M) for automation of industrial processes, based on the IEEE1451 standard. Process automation with I2M can communicate through either wires or using wireless communication, without any hardware or software changes. We used FPGA resources to implement the I2M functions FPGA, with a NIOS II processor and ZigBee communication system (IEEE802.15), as well as RS232 serial standard. Part of the project was done in the SOPC Builder environment, which gave the designer flexibility and speed to implement the NIOS II-based microprocessor system. To test the I2M implementation, a didactic Industrial Hydraulic Module (MHI-01) was used to simulate two industrial processes to be controlled by the system proposed.
Resumo:
Recently in most of the industrial automation process an ever increasing degree of automation has been observed. This increasing is motivated by the higher requirement of systems with great performance in terms of quality of products/services generated, productivity, efficiency and low costs in the design, realization and maintenance. This trend in the growth of complex automation systems is rapidly spreading over automated manufacturing systems (AMS), where the integration of the mechanical and electronic technology, typical of the Mechatronics, is merging with other technologies such as Informatics and the communication networks. An AMS is a very complex system that can be thought constituted by a set of flexible working stations, one or more transportation systems. To understand how this machine are important in our society let considerate that every day most of us use bottles of water or soda, buy product in box like food or cigarets and so on. Another important consideration from its complexity derive from the fact that the the consortium of machine producers has estimated around 350 types of manufacturing machine. A large number of manufacturing machine industry are presented in Italy and notably packaging machine industry,in particular a great concentration of this kind of industry is located in Bologna area; for this reason the Bologna area is called “packaging valley”. Usually, the various parts of the AMS interact among them in a concurrent and asynchronous way, and coordinate the parts of the machine to obtain a desiderated overall behaviour is an hard task. Often, this is the case in large scale systems, organized in a modular and distributed manner. Even if the success of a modern AMS from a functional and behavioural point of view is still to attribute to the design choices operated in the definition of the mechanical structure and electrical electronic architecture, the system that governs the control of the plant is becoming crucial, because of the large number of duties associated to it. Apart from the activity inherent to the automation of themachine cycles, the supervisory system is called to perform other main functions such as: emulating the behaviour of traditional mechanical members thus allowing a drastic constructive simplification of the machine and a crucial functional flexibility; dynamically adapting the control strategies according to the different productive needs and to the different operational scenarios; obtaining a high quality of the final product through the verification of the correctness of the processing; addressing the operator devoted to themachine to promptly and carefully take the actions devoted to establish or restore the optimal operating conditions; managing in real time information on diagnostics, as a support of the maintenance operations of the machine. The kind of facilities that designers can directly find on themarket, in terms of software component libraries provides in fact an adequate support as regard the implementation of either top-level or bottom-level functionalities, typically pertaining to the domains of user-friendly HMIs, closed-loop regulation and motion control, fieldbus-based interconnection of remote smart devices. What is still lacking is a reference framework comprising a comprehensive set of highly reusable logic control components that, focussing on the cross-cutting functionalities characterizing the automation domain, may help the designers in the process of modelling and structuring their applications according to the specific needs. Historically, the design and verification process for complex automated industrial systems is performed in empirical way, without a clear distinction between functional and technological-implementation concepts and without a systematic method to organically deal with the complete system. Traditionally, in the field of analog and digital control design and verification through formal and simulation tools have been adopted since a long time ago, at least for multivariable and/or nonlinear controllers for complex time-driven dynamics as in the fields of vehicles, aircrafts, robots, electric drives and complex power electronics equipments. Moving to the field of logic control, typical for industrial manufacturing automation, the design and verification process is approached in a completely different way, usually very “unstructured”. No clear distinction between functions and implementations, between functional architectures and technological architectures and platforms is considered. Probably this difference is due to the different “dynamical framework”of logic control with respect to analog/digital control. As a matter of facts, in logic control discrete-events dynamics replace time-driven dynamics; hence most of the formal and mathematical tools of analog/digital control cannot be directly migrated to logic control to enlighten the distinction between functions and implementations. In addition, in the common view of application technicians, logic control design is strictly connected to the adopted implementation technology (relays in the past, software nowadays), leading again to a deep confusion among functional view and technological view. In Industrial automation software engineering, concepts as modularity, encapsulation, composability and reusability are strongly emphasized and profitably realized in the so-calledobject-oriented methodologies. Industrial automation is receiving lately this approach, as testified by some IEC standards IEC 611313, IEC 61499 which have been considered in commercial products only recently. On the other hand, in the scientific and technical literature many contributions have been already proposed to establish a suitable modelling framework for industrial automation. During last years it was possible to note a considerable growth in the exploitation of innovative concepts and technologies from ICT world in industrial automation systems. For what concerns the logic control design, Model Based Design (MBD) is being imported in industrial automation from software engineering field. Another key-point in industrial automated systems is the growth of requirements in terms of availability, reliability and safety for technological systems. In other words, the control system should not only deal with the nominal behaviour, but should also deal with other important duties, such as diagnosis and faults isolations, recovery and safety management. Indeed, together with high performance, in complex systems fault occurrences increase. This is a consequence of the fact that, as it typically occurs in reliable mechatronic systems, in complex systems such as AMS, together with reliable mechanical elements, an increasing number of electronic devices are also present, that are more vulnerable by their own nature. The diagnosis problem and the faults isolation in a generic dynamical system consists in the design of an elaboration unit that, appropriately processing the inputs and outputs of the dynamical system, is also capable of detecting incipient faults on the plant devices, reconfiguring the control system so as to guarantee satisfactory performance. The designer should be able to formally verify the product, certifying that, in its final implementation, it will perform itsrequired function guarantying the desired level of reliability and safety; the next step is that of preventing faults and eventually reconfiguring the control system so that faults are tolerated. On this topic an important improvement to formal verification of logic control, fault diagnosis and fault tolerant control results derive from Discrete Event Systems theory. The aimof this work is to define a design pattern and a control architecture to help the designer of control logic in industrial automated systems. The work starts with a brief discussion on main characteristics and description of industrial automated systems on Chapter 1. In Chapter 2 a survey on the state of the software engineering paradigm applied to industrial automation is discussed. Chapter 3 presentes a architecture for industrial automated systems based on the new concept of Generalized Actuator showing its benefits, while in Chapter 4 this architecture is refined using a novel entity, the Generalized Device in order to have a better reusability and modularity of the control logic. In Chapter 5 a new approach will be present based on Discrete Event Systems for the problemof software formal verification and an active fault tolerant control architecture using online diagnostic. Finally conclusive remarks and some ideas on new directions to explore are given. In Appendix A are briefly reported some concepts and results about Discrete Event Systems which should help the reader in understanding some crucial points in chapter 5; while in Appendix B an overview on the experimental testbed of the Laboratory of Automation of University of Bologna, is reported to validated the approach presented in chapter 3, chapter 4 and chapter 5. In Appendix C some components model used in chapter 5 for formal verification are reported.
Resumo:
Cost, performance and availability considerations are forcing even the most conservative high-integrity embedded real-time systems industry to migrate from simple hardware processors to ones equipped with caches and other acceleration features. This migration disrupts the practices and solutions that industry had developed and consolidated over the years to perform timing analysis. Industry that are confident with the efficiency/effectiveness of their verification and validation processes for old-generation processors, do not have sufficient insight on the effects of the migration to cache-equipped processors. Caches are perceived as an additional source of complexity, which has potential for shattering the guarantees of cost- and schedule-constrained qualification of their systems. The current industrial approach to timing analysis is ill-equipped to cope with the variability incurred by caches. Conversely, the application of advanced WCET analysis techniques on real-world industrial software, developed without analysability in mind, is hardly feasible. We propose a development approach aimed at minimising the cache jitters, as well as at enabling the application of advanced WCET analysis techniques to industrial systems. Our approach builds on:(i) identification of those software constructs that may impede or complicate timing analysis in industrial-scale systems; (ii) elaboration of practical means, under the model-driven engineering (MDE) paradigm, to enforce the automated generation of software that is analyzable by construction; (iii) implementation of a layout optimisation method to remove cache jitters stemming from the software layout in memory, with the intent of facilitating incremental software development, which is of high strategic interest to industry. The integration of those constituents in a structured approach to timing analysis achieves two interesting properties: the resulting software is analysable from the earliest releases onwards - as opposed to becoming so only when the system is final - and more easily amenable to advanced timing analysis by construction, regardless of the system scale and complexity.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e Computadores
Resumo:
During last decades there has been a trend to build collaboration platforms as enablers for groups of enterprises to jointly provide integrated services and products. As a result, the notion of business ecosystem is getting wider acceptance. However, a critical issue that is still open, despite some efforts in this area, is the identification of adequate performance indicators to measure and motivate sustainable collaboration. This work-in-progress addresses this concern, briefly presenting the state of the art of relevant contributing areas such as, collaborative networks, business ecosystems, enterprise performance indicators, social networks analysis, and supply chains. Complementarily, through an assessment of current gaps, the research challenges are identified and an approach for further development is proposed.