959 resultados para Deubiquitinating Enzymes
Resumo:
Here we report the identification of 10 human, 1 murine, and 2 rat ORFs, all of which represent additional members of the DUB/USP17 family of deubiquitinating enzymes. In addition, we demonstrate that this family constitutes part of a tandemly repeated sequence conserved throughout humans, mice, and rats. Furthermore, upon examination of the known family members we have found that the multiple genes observed, in contrast to other gene families, have arisen due to the independent expansion of an ancestral sequence within each species. This premise is further strengthened by the observation that the murine and rat genes span two exons while their human counterparts have one. These observations, in conjunction with previous work demonstrating that the DUB/USP17's are cytokine inducible and that they regulate both cell growth and survival, suggest that the DUB/USP17's are a large highly conserved family of genes that may play an important role in controlling cell fate.
Resumo:
Background: The DUB/USP17 subfamily of deubiquitinating enzymes were originally identified as immediate early genes induced in response to cytokine stimulation in mice (DUB-1, DUB-1A, DUB-2, DUB-2A). Subsequently we have identified a number of human family members and shown that one of these (DUB-3) is also cytokine inducible. We originally showed that constitutive expression of DUB-3 can block cell proliferation and more recently we have demonstrated that this is due to its regulation of the ubiquitination and activity of the 'CAAX' box protease RCE1.
Results: Here we demonstrate that the human DUB/USP17 family members are found on both chromosome 4p16.1, within a block of tandem repeats, and on chromosome 8p23.1, embedded within the copy number variable betadefensin cluster. In addition, we show that the multiple genes observed in humans and other distantly related mammals have arisen due to the independent expansion of an ancestral sequence within each species. However, it is also apparent when sequences from humans and the more closely related chimpanzee are compared, that duplication events have taken place prior to these species separating.
Conclusions: The observation that the DUB/USP17 genes, which can influence cell growth and survival, have evolved from an unstable ancestral sequence which has undergone multiple and varied duplications in the species examined marks this as a unique family. In addition, their presence within the beta-defensin repeat raises the question whether they may contribute to the influence of this repeat on immune related conditions.
Resumo:
The conjugation of ubiquitin as either a monomer or as a chain has long been known to regulate the stability, localisation, trafficking and/or function of many intracellular proteins. However, the recent explosion in our knowledge of the enzymes responsible for the removal of ubiquitin suggests they also play an important role in the regulation of many processes. Here we examine what is known about the role of deubiquitinating enzymes (DUBs), with particular emphasis upon their impact on cellular responses to external stimuli. In addition, we look at the evidence that although these enzymes are heavily outnumbered by those responsible for ubiquitin conjugation, that these enzymes may still be important cellular regulators, due to their ability to play multiple roles which can be cell type and cell context specific.
Resumo:
El marcaje de proteínas con ubiquitina, conocido como ubiquitinación, cumple diferentes funciones que incluyen la regulación de varios procesos celulares, tales como: la degradación de proteínas por medio del proteosoma, la reparación del ADN, la señalización mediada por receptores de membrana, y la endocitosis, entre otras (1). Las moléculas de ubiquitina pueden ser removidas de sus sustratos gracias a la acción de un gran grupo de proteasas, llamadas enzimas deubiquitinizantes (DUBs) (2). Las DUBs son esenciales para la manutención de la homeostasis de la ubiquitina y para la regulación del estado de ubiquitinación de diferentes sustratos. El gran número y la diversidad de DUBs descritas refleja tanto su especificidad como su utilización para regular un amplio espectro de sustratos y vías celulares. Aunque muchas DUBs han sido estudiadas a profundidad, actualmente se desconocen los sustratos y las funciones biológicas de la mayoría de ellas. En este trabajo se investigaron las funciones de las DUBs: USP19, USP4 y UCH-L1. Utilizando varias técnicas de biología molecular y celular se encontró que: i) USP19 es regulada por las ubiquitin ligasas SIAH1 y SIAH2 ii) USP19 es importante para regular HIF-1α, un factor de transcripción clave en la respuesta celular a hipoxia, iii) USP4 interactúa con el proteosoma, iv) La quimera mCherry-UCH-L1 reproduce parcialmente los fenotipos que nuestro grupo ha descrito previamente al usar otros constructos de la misma enzima, y v) UCH-L1 promueve la internalización de la bacteria Yersinia pseudotuberculosis.
Resumo:
The E3 ubiquitin ligase c-Cbl ubiquitinates the G protein-coupled receptor protease-activated receptor 2 (PAR(2)), which is required for postendocytic sorting of activated receptors to lysosomes, where degradation terminates signaling. The mechanisms of PAR(2) deubiquitination and its importance in trafficking and signaling of endocytosed PAR(2) are unknown. We report that receptor deubiquitination occurs between early endosomes and lysosomes and involves the endosomal deubiquitinating proteases AMSH and UBPY. Expression of the catalytically inactive mutants, AMSH(D348A) and UBPY(C786S), caused an increase in PAR(2) ubiquitination and trapped the receptor in early endosomes, thereby preventing lysosomal trafficking and degradation. Small interfering RNA knockdown of AMSH or UBPY also impaired deubiquitination, lysosomal trafficking, and degradation of PAR(2). Trapping PAR(2) in endosomes through expression of AMSH(D348A) or UBPY(C786S) did not prolong the association of PAR(2) with beta-arrestin2 or the duration of PAR(2)-induced ERK2 activation. Thus, AMSH and UBPY are essential for trafficking and down-regulation of PAR(2) but not for regulating PAR(2) dissociation from beta-arrestin2 or PAR(2)-mediated ERK2 activation.
Resumo:
Previous studies have identified the DUB family of cytokine-regulated murine deubiquitinating enzymes, which play a role in the control of cell proliferation and survival. Through data base analyses and cloning, we have identified a human cDNA (DUB-3) that shows significant homology to the known murine DUB family members. Northern blotting has shown expression of this gene in a number of tissues including brain, liver, and muscle, with two transcripts being apparent (1.6 and 1.7 kb). In addition, expression was observed in cell lines including those derived from a number of hematopoietic tumors such as the Burkitt's lymphoma cell line RAJI. We have also demonstrated that DUB-3, which was shown to be an active deubiquitinating enzyme, is induced in response to interleukin-4 and interleukin-6 stimulation. Finally, we have demonstrated that constitutive expression of DUB-3 blocks proliferation and can initiate apoptosis in both IL-3-dependent Ba/F3 cells and NIH3T3 fibroblasts. These findings suggest that human DUB-3, like the murine DUB family members, is transiently induced in response to cytokines and can, when constitutively expressed, block growth factor-dependent proliferation.
Resumo:
Ubiquitination is a reversible posttranslational modification that is essential for cell cycle control, and it is becoming increasingly clear that the removal of ubiquitin from proteins by deubiquitinating enzymes (DUB) is equally important. In this study, we have identified high levels of the DUB USP17 in several tumor-derived cell lines and primary lung, colon, esophagus, and cervix tumor biopsies. We also report that USP17 is tightly regulated during the cell cycle in all the cells examined, being abundantly evident in G1 and absent in S phase. Moreover, regulated USP17 expression was necessary for cell cycle progression because its depletion significantly impaired G1-S transition and blocked cell proliferation. Previously, we have shown that USP17 regulates the intracellular translocation and activation of the GTPase Ras by controlling Ras-converting enzyme 1 (RCE1) activation. RCE1 also regulates the processing of other proteins with a CAAX motif, including Rho family GTPases. We now show that USP17 depletion blocks Ras and RhoA localization and activation. Moreover, our results confirm that USP17-depleted cells have constitutively elevated levels of the cyclin-dependent kinase inhibitors p21cip1 and p27kip1, known downstream targets of Ras and RhoA signaling. These observations clearly show that USP17 is tightly regulated during cell division and that its expression is necessary to coordinate cell cycle progression, and thus, it may be considered a promising novel cancer therapeutic target. Cancer Res; 70(8); 3329–39. ©2010 AACR.
The Deubiquitinating Enzyme USP17 is Essential for GTPase Subcellular localization and Cell Motility
Resumo:
Deubiquitinating enzymes are now emerging as potential therapeutic targets that control many cellular processes, but few have been demonstrated to control cell motility. Here, we show that ubiquitin-specific protease 17 (USP17) is rapidly and transiently induced in response to chemokines SDF-1/CXCL12 and IL-8/CXCL8 in both primary cells and cell lines, and that its depletion completely blocks chemokine-induced cell migration and cytoskeletal rearrangements. Using live cell imaging, we demonstrate that USP17 is required for both elongated and amoeboid motility, in addition to chemotaxis. USP17 has previously been reported to disrupt Ras localization and we now find that USP17 depletion blocks chemokine-induced subcellular relocalization of GTPases Cdc42, Rac and RhoA, which are GTPases essential for cell motility. Collectively, these results demonstrate that USP17 has a critical role in cell migration and may be a useful drug target for both inflammatory and metastatic disease.
Resumo:
Cytokines regulate cell growth by inducing the expression of specific target genes. Using the differential display method, we have cloned a cytokine-inducible immediate early gene, DUB-1 (for deubiquitinating enzyme). DUB-1 is related to members of the UBP superfamily of deubiquitinating enzymes, which includes the oncoprotein Tre-2. A glutathione S-transferase-DUB-1 fusion protein cleaved ubiquitin from a ubiquitin-beta-galactosidase protein. When a conserved cysteine residue of DUB-1, required for ubiquitin-specific thiol protease activity, was mutated to serine (C60S), deubiquitinating activity was abolished. Continuous expression of DUB-1 from a steroid-inducible promoter induced growth arrest in the G1 phase of the cell cycle. Cells arrested by DUB-1 expression remained viable and resumed proliferation upon steroid withdrawal. Our results suggest that DUB-1 regulates cellular growth by modulating either the ubiquitin-dependent proteolysis or the ubiquitination state of an unknown growth regulatory factor(s).
Resumo:
Le virus du papillome humain (VPH) est l’agent étiologique du cancer du col utérin, ainsi que d’autre néoplasies anogénitales et des voies aérodigestives supérieures. La réplication de son génome d’ADN double brin est assurée par les protéines virales E1 et E2, de concert avec la machinerie cellulaire de réplication. E1 assure le déroulement de l’ADN en aval de la fourche de réplication, grâce à son activité hélicase, et orchestre la duplication du génome viral. Nos travaux antérieurs ont démontré que le domaine N-terminal de E1 contient un motif de liaison à la protéine cellulaire p80/UAF1 qui est hautement conservé chez tous les VPH anogénitaux. L’intégrité de ce motif est essentielle au maintien de l’épisome viral. Les travaux présentés dans cette thèse ont d’abord déterminé que le motif de liaison à UAF1 n’est pas requis pour l’assemblage du pré-réplisome viral, mais important pour la réplication subséquente de l’ADN du VPH. Nous avons constaté qu’en présence de E1 et E2, UAF1 est relocalisé dans des foyers nucléaires typiques de sites de réplication du virus et qu’en outre, UAF1 s’associe physiquement à l’origine de réplication du VPH. Nous avons aussi déterminé que l’inhibition du recrutement de UAF1 par la surexpression d’un peptide dérivé de E1 (N40) contenant le motif de liaison à UAF1 réduit la réplication de l’ADN viral. Cette observation soutient le modèle selon lequel UAF1 est relocalisé par E1 au réplisome pour promouvoir la réplication de l’ADN viral. UAF1 est une protéine à domaine WD40 n’encodant aucune activité enzymatique et présumée exploiter des interactions protéine-protéine pour accomplir sa fonction. Nous avons donc investigué les protéines associées à UAF1 dans des cellules du col utérin et avons détecté des interactions avec les enzymes de déubiquitination USP1, USP12 et USP46, ainsi qu’avec la phosphatase PHLPP1. Nous avons établi que E1 forme un complexe ternaire avec UAF1 et n’importe laquelle des USP associés : USP1, USP12 ou USP46. Ces USP sont relocalisés au noyau par E1 et s’associent à l’ADN viral. De plus, l’activité enzymatique des USP est essentielle à la réplication optimale du génome viral. Au contraire, PHLPP1 ne forme pas de complexe avec E1, puisque leurs interactions respectives avec UAF1 sont mutuellement exclusives. PHLPP1 contient un peptide de liaison à UAF1 homologue à celui de E1. Ce peptide dérivé de PHLPP1 (P1) interagit avec le complexe UAF1-USP et, similairement au peptide N40, antagonise l’interaction E1-UAF1. Incidemment, la surexpression du peptide P1 inhibe la réplication de l’ADN viral. La génération de protéines chimériques entre P1 et des variants de E1 (E1Δ) défectifs pour l’interaction avec UAF1 restaure la capacité de E1Δ à interagir avec UAF1 et USP46, ainsi qu’à relocaliser UAF1 dans les foyers nucléaires contenant E1 et E2. Ce recrutement artificiel de UAF1 et des USP promeut la réplication de l’ADN viral, un phénotype dépendant de l’activité déubiquitinase du complexe. Globalement, nos travaux suggèrent que la protéine E1 du VPH interagit avec UAF1 afin de recruter au réplisome un complexe de déubiquitination dont l’activité est importante pour la réplication de l’ADN viral.
Resumo:
Deubiquitination of NF-κB members by CYLD is crucial in controlling the magnitude and nature of cell activation. The naturally occurring CYLD splice variant, devoid of exons 7 and 8, lacks TRAF2 and NEMO binding sites. The role of this splice variant in dendritic cell (DC) function was analyzed using CYLDex7/8 mice, which lack the full-length CYLD (FL-CYLD) transcript and over-express the short splice variant (sCYLD). Bone marrow derived DCs (BMDC) from CYLDex7/8 mice display a hyper-reactive phenotype in vitro and in vivo and have a defect in establishing tolerance using DEC205-mediated antigen targeting to resting DCs. This phenotype was accompanied by an increased nuclear translocation of the IκB molecule Bcl-3, and increased degradation of cytoplasmic p105 in CYLDex7/8 BMDCs after stimulation. This suggests that in contrast to FL-CYLD, sCYLD is a positive regulator of NF-κB activity and its over-expression induces a hyper-reactive phenotype in DCs.
Resumo:
The Jak-stat pathway is critical for cellular proliferation and is commonly found to be deregulated in many solid tumors as well as hematological malignancies. Such findings have spurred the development of novel therapeutic agents that specifically inhibit Jak2 kinase, thereby suppressing tumor cell growth. Tyrphostin AG490, the first described Jak2 inhibitor, displays poor pharmacology and requires high concentrations for anti-tumor activities. Our research group screened a small library of AG490 structural analogues and identified WP1130 as a potent inhibitor of Jak2 signaling. However, unlike AG490, WP1130 did not directly inhibit Jak2 kinase activity. Our results show that WP1130 induces rapid ubiquitination and subsequent re-localization of Jak2 into signaling incompetent aggresomes. In addition to Jak2, WP1130 also induces accumulation of other ubiquitinated proteins without inhibiting 20S proteasome activity. Further analysis of the mechanism of action of WP1130 revealed that WP1130 acts as a partly selective DUB inhibitor. It specifically inhibits the deubiquitinase activity of USP9x, USP5, USP14 and UCH37. WP1130 mediated inhibition of tumor-associated DUBs resulted in down-regulation of anti-apoptotic and up-regulation of pro-apoptotic proteins, such as MCL-1 and p53 respectively. Our results demonstrate that chemical modification of a previously described Jak2 inhibitor results in the unexpected discovery of a novel compound which acts as a DUB inhibitor, suppressing Jak-Stat signaling by a novel mechanism.
Resumo:
Akt (also known as protein kinase B) serves a central regulator in PI3K/Akt signaling pathways to regulate numerous physiological functions including cell proliferation, survival and metabolism. Akt activation requires the binding of Akt to phospholipid PIP3 on the plasma membrane and subsequent phosphorylation of Akt by its kinases. Growth factor-mediated membrane recruitment of Akt is a crucial step for Akt activation. However, the mechanism of Akt membrane translocation is unclear. Protein ubiquitination is a significant posttranslational modification that controls many biological functions such as protein trafficking and signaling activation. Therefore, we hypothesize that ubiquitination may be involved in Akt signaling activation. We have demonstrated that Akt could be conjugated with non-proteolytic K63-linked ubiquitination by TRAF6 ubiquitin E3 ligase. This modification on Akt was required for membrane recruitment, phosphorylation and activation of Akt in response to growth factor stimulation. The human cancer-associated Akt E17K mutant exhibited an increase in K63-linked ubiquitination, which contributes to the enrichment of membrane recruitment and phosphorylation of Akt. Thus, we conclude that K63-linked ubiquitination is a critical step for oncogenic Akt activation and also involved in human cancer development. Notably, the process of protein ubiquitination can be reversed by deubiquitinating enzymes (DUBs), which play a critical role to terminate signaling activation induced by ubiquitination. To further investigate how ubiquitination cycles regulate Akt activation, we have identified that CYLD as a DUB for Akt, and CYLD inhibited growth factor-induced ubiquitination and activation of Akt. Under serum-depletion condition, CYLD interacts with Akt and keep Akt under inactive state by directly removing K63-linked ubiquitination of Akt. CYLD disassociates with Akt upon growth factor stimulation, thereby allowing E3 ligases to induce ubiquitination and activation of Akt. We also demonstrated that CYLD deficiency promoted cancer cell proliferation, survival, glucose metabolism and human prostate cancer development. Therefore, we conclude that CYLD plays a critical role for negatively regulating Akt signaling activation through deubiquitination of Akt. In summary, this study delineated the important mechanism of cycles of ubiquitination and deubiquitination of Akt in regulating membrane translocation and activation of Akt, and TRAF6 and CYLD as central switches for these processes.
Resumo:
Alzheimer's disease is the most common cause of dementia in the elderly. Although several genetic defects have been identified in patients with a family history of this disease, the majority of cases involve individuals with no known genetic predisposition. A mutant form of ubiquitin, termed Ub+1, has been selectively observed in the brains of Alzheimer's patients, including those with nonfamilial Alzheimer's disease, but it has been unclear why Ub+1 expression should be deleterious. Here we show that Ub+1 is an efficient substrate for polyubiquitination in vitro and in transfected human cells. The resulting polyubiquitin chains are refractory to disassembly by deubiquitinating enzymes and potently inhibit the degradation of a polyubiquitinated substrate by purified 26S proteasomes. Thus, expression of Ub+1 in aging brain could result in dominant inhibition of the Ub-proteasome system, leading to neuropathologic consequences.