925 resultados para Detergent Additives


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study led to the recognition of Natrinema sp. BTSH 10 isolated from saltern ponds, as an ideal candidate species for production of gelatinase, which was noted as a halozyme capable of showing enzyme activity in the presence of 15% NaCl. Results obtained during the course of the present study indicated potential for application of this enzyme in industrial catalysis that are performed in the presence of high concentrations of salt. The enzyme characteristics noted with this gelatinase also indicate the scope for probable applications in leather industry, meat tenderization, production of fish sauce and soy sauce. Since halophilic proteases are tolerant to organic solvents, they could be used in antifouling coating preparations used to prevent biofouling of submarine equipments. The gelatinase from haloarchaea could be considered as a probable candidate for peptide synthesis. However, further studies are warranted on this haloarcheal gelatinase particularly on structure elucidation and enzyme engineering to suit a wide range of applications. There is immense scope for developing this halozyme as an industrial enzyme once thorough biochemistry of this gelatinase is studied and a pilot scale study is conducted towards industrial production of this enzyme under fermentation is facilitated. Based on the present study it is concluded that haloarchaea Natrinema sp. that inhabit solar saltern ponds are ideal source for deriving industrially important halozymes and molecular studies on enzymes are prerequisite for their probable industrial applications. This is the first time this species of archaea is recognized as a source of gelatinase enzyme that has potential for industrial applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of experiments was completed to investigate the impact of addition of enzymes at ensiling on in vitro rumen degradation of maize silage. Two commercial products, Depot 40 (D, Biocatalysts Ltd., Pontypridd, UK) and Liquicell 2500 (L, Specialty Enzymes and Biochemicals, Fresno, CA, USA), were used. In experiment 1, the pH optima over a pH range 4.0-6.8 and the stability of D and L under changing pH (4.0, 5.6, 6.8) and temperature (15 and 39 degreesC) conditions were determined. In experiment 2, D and L were applied at three levels to whole crop maize at ensiling, using triplicate 0.5 kg capacity laboratory minisilos. A completely randomized design with a factorial arrangement of treatments was used. One set of treatments was stored at room temperature, whereas another set was stored at 40 degreesC during the first 3 weeks of fermentation, and then stored at room temperature. Silages were opened after 120 days. Results from experiment I indicated that the xylanase activity of both products showed an optimal pH of about 5.6, but the response differed according to the enzyme, whereas the endoglucanase activity was inversely related to pH. Both products retained at least 70% of their xylanase activity after 48 h incubation at 15 or 39 degreesC. In experiment 2, enzymes reduced (P < 0.05) silage pH, regardless of storage temperature and enzyme level. Depol 40 reduced (P < 0.05) the starch contents of the silages, due to its high alpha-amylase activity. This effect was more noticeable in the silages stored at room temperature. Addition of L reduced (P < 0.05) neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents. In vitro rumen degradation, assessed using the Reading Pressure Technique (RPT), showed that L increased (P < 0.05) the initial 6 h gas production (GP) and organic matter degradability (OMD), but did not affect (P > 0.05) the final extent of OMD, indicating that this preparation acted on the rumen degradable material. In contrast, silages treated with D had reduced (P < 0.05) rates of gas production and OMD. These enzymes, regardless of ensiling temperature, can be effective in improving the nutritive quality of maize silage when applied at ensiling. However, the biochemical properties of enzymes (i.e., enzymic activities, optimum pH) may have a crucial role in dictating the nature of the responses. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effects of adding alkalis on the fermentative pattern, aerobic stability and nutritive value of the sugarcane silage. A completely randomized design with 6 additives in two concentrations (1 or 2%), plus a control group, totalizing 13 treatments [(6x2)+1] with four replications, was used. The additives were sodium hydroxide (NaOH), limestone (CaCO3), urea (CO(NH2)(2)), sodium bicarbonate (NaHCO3), quicklime (CaO) and hydrated lime (Ca(OH)(2)). The material was ensiled in 52 laboratory silos using plastic buckets with 12 L of capacity. Silos were opened 60 days after ensiling, when organic acids concentration, aerobic stability and chemical composition were determined. The Relative Biological Efficiency (RBE) was calculated by the slope ratio method, using the data obtained from ratio between desirable and undesirable silage products, according to the equation: D/U ratio = [lactic/(ethanol + acetic + butyric)]. All additives affected dry matter, crude protein, acid detergent fiber, neutral detergent fiber contents and buffering capacity. Except for urea and quicklime, all additives increased the in vitro dry matter digestibility. In general, these additives altered the fermentative pattern of sugarcane silage, inhibiting alcoholic fermentation and improving lactic acid production. The additive that showed the best RBE in relation to sodium hydroxide (100%) was limestone (89.4%). The RBE values of urea, sodium bicarbonate and hydrated lime were 49.2%, 47.7% and 34.3%, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lubricants are normally composed by base oils and a number of additives which are added to improve the performances of the final product. In this work, which is due to the collaboration between ENI S.p.A. and Prof. Casnati’s group, significant results in the application of calixarene structures to two classes of lubricant additives (viscosity index improvers and detergents) were shown. In particular, several calix[8]arene derivatives were synthesized to use as core precursors in the “arm-first" synthetic processes of star polymers for viscosity index improver applications. The use of calixarene derivatives enable the production of star polymers with a high and well-defined number of branches and endowed with a very low dispersivity of molecular weight which can originate better performances than the current commercially available viscosity index improvers of the major competitor. Several functional groups were considered to prepare reactive p-tert-butylcalix[8]arene cores to be used in living anionic polymerization. n-butyllithium was used as model of the living anionic polymer to test the outcome of the reaction of polymer insertion on the calixarene core, facilitating the analyses of the products. The calixarene derivative, which easier reacts with n-BuLi, was selected for the preparation of star polymers by using a isoprene/styrene living anionic polymer. Finally, the lubricant formulations, which include the calixarene-based star polymers or commercially available products as viscosity index improvers, were prepared and comparatively tested. In the last part of Thesis, the use of calixarenes as polycarboxylic acids to synthetize new sulfur-free detergents as lubricant additives was carried out. In this way, these calcium-based detergents can be used for the formulation of new automotive lubricants with low content of ash, phosphorus and sulfur (low SAPS). To increase the low deprotonation degree of OH groups and their capacity to complex calcium ions, a complete functionalization of the calixarene mixtures with acetic acid groups was required. Futhermore, the “one-step” synthesis of new calixarenes with alkyl chains in para positions longer than the ones already known was necessary to improve the oil solubility and stability of reverse micelles formed by the detergents. Moreover, the separation and characterization of the calixarenes were carried out to optimize their synthetic process, also on pilot scale. For our purpose, the use of p-tert-octylcalixarenes for the preparation of detergents was carried out to compare the properties of the final detergents respect to the use of the p-dodecyl calixarenes. Once achieved the functionalization of both calixarene mixtures with carboxylic acid groups, the syntheses of new calixarene-based detergents were carried out to identify the best calixarene derivative for our research goals. The synthetic process for the preparation of calixarene-based detergent having very high basicity (TBN 400) was also investigated for applications in lubricants for marine engines. In addition, with the aim of testing the calixarene-based detergents in automotive lubricants, several additive packages (concentrated mixture of additives) containing our detergents were prepared. Using these packages the corresponding automotive lubricants can be formulated. Besides, a lubricant containing commercial calcium alkylbenzene-sulfonates detergents was prepared to compare its detergency properties with those of the calixarene-based oils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer nanocomposites (NC) are fabricated by incorporating well dispersed nanoscale particles within a polymer matrix. This study focuses on elastomeric polyurethane (PU) based nanocomposites, containing organically modified silicates (OMS), as bioactive materials. Nanocomposites incorporating chlorhexidine diacetate as an organic modifier (OM) were demonstrated to be antibacterial with a dose dependence related to both the silicate loading and the loading of OM. When the non-antibacterial OM dodecylamine was used, both cell and platelet adhesion were decreased on the nanocomposite surface. These results suggest that OM is released from the polymer and can impact on cell behaviour at the interface. Nanocomposites have potential use as bioactive materials in a range of biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Y123 samples with varying amounts of added Y211, PtO 2 and CeO 2 have been melt processed and quenched from temperatures between 960°C and 1100°C. The microstructures of the quenched samples have been characterized using a combination of x-ray diffractometry, optical microscopy, scanning electron microscopy, microprobe analysis, energy-dispersive x-ray spectroscopy and wavelength-dispersive x-ray spectroscopy. The Ba-Cu-O-rich melt undergoes complex changes as a function of temperature and time. A region of stability of BaCuO 2 (BC1) and BaCu 2O 2 (BC2) exists below 1040°C in samples of Y123 + 20 mol% Y211. Ba 2Cu 3O 5 is stabilized by rapid quenching but appears to separate into BC1 and BC2 at lower quenching rates. PtO 2 and CeO 2 additions affect the distribution and volume fractions of the two Ba-Cu-oxide phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructures of the quenched melts of samples of Y123 and Y123+15-20 mol% Y211 with PtO2 and CeO2 additives have been examined with optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectrometry (EDS) and X-ray Diffractometry (XRD). Significantly higher temperatures are required for the formation of dendritic or lamellar eutectic patterns throughout the samples with PtO2 and CeO2 additives as compared to samples without additives. The BaCuO2 (BCl) phase appears first in solid form and, instead of rapidly melting, is slowly dissolving or decomposing in the oxygen depleted melt. PtO2 and CeO2 additives slow down or shift to higher temperatures the dissolution or decomposition process of BCl. A larger fraction of BCl in solid form explains why samples with additives have higher viscosities and hence lower diffusivities than samples without additives. There is also a reduction in the Y solubility to about half the value in samples without additives. The mechanism that limits the Ostwald ripening of the Y211 particles is correlated to the morphology of the quenched partial melt. It is diffusion controlled for a finely mixed morphology and interface-controlled when the melt quenches into dendritic or lamellar eutectic patterns. The change in the morphology of the Y211 particles from blocky to acicular is related to an equivalent undercooling of the Y-Ba-Cu-O partial melt, particularly through the crystallization of BCl.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paint Spray is developed as a direct sampling ionisation method for mass spectrometric analysis of additives in polymer-based surface coatings. The technique simply involves applying an external high voltage (5 kV) to the wetted sample placed in front of the mass spectrometer inlet and represents a much simpler ionisation technique compared to those currently available. The capabilities of Paint Spray are demonstrated herein with the detection of four commercially available hindered amine light stabilisers; TINUVIN® 770, TINUVIN® 292, TINUVIN® 123 and TINUVIN® 152 directly from thermoset polyester-based coil coatings. Paint Spray requires no sample preparation or pre-treatment and combined with its simplicity - requiring no specialised equipment - makes it ideal for use by non-specialists. The application of Paint Spray for industrial use has significant potential as sample collection from a coil coating production line and Paint Spray ionisation could enable fast quality control screening at high sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this review is to showcase the present capabilities of ambient sampling and ionisation technologies for the analysis of polymers and polymer additives by mass spectrometry (MS) while simultaneously highlighting their advantages and limitations in a critical fashion. To qualify as an ambient ionisation technique, the method must be able to probe the surface of solid or liquid samples while operating in an open environment, allowing a variety of sample sizes, shapes, and substrate materials to be analysed. The main sections of this review will be guided by the underlying principle governing the desorption/extraction step of the analysis; liquid extraction, laser ablation, or thermal desorption, and the major component investigated, either the polymer itself or exogenous compounds (additives and contaminants) present within or on the polymer substrate. The review will conclude by summarising some of the challenges these technologies still face and possible directions that would further enhance the utility of ambient ionisation mass spectrometry as a tool for polymer analysis. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE: Polymer-based surface coatings in outdoor applications experience accelerated degradation due to exposure to solar radiation, oxygen and atmospheric pollutants. These deleterious agents cause undesirable changes to the aesthetic and mechanical properties of the polymer, reducing its lifetime. The use of antioxidants such as hindered amine light stabilisers (HALS) retards these degradative processes; however, mechanisms for HALS action and polymer degradation are poorly understood. METHODS: Detection of the HALS TINUVINW123 (bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate) and the polymer degradation products directly from a polyester-based coil coating was achieved by liquid extraction surface analysis (LESA) coupled to a triple quadrupole QTRAPW 5500 mass spectrometer. The detection of TINUVINW123 and melamine was confirmed by the characteristic fragmentation pattern observed in LESA-MS/MS spectra that was identical to that reported for authentic samples. RESULTS: Analysis of an unstabilised coil coating by LESA-MS after exposure to 4 years of outdoor field testing revealed the presence of melamine (1,3,5-triazine-2,4,6-triamine) as a polymer degradation product at elevated levels. Changes to the physical appearance of the coil coating, including powder-like deposits on the coating's surface, were observed to coincide with melamine deposits and are indicative of the phenomenon known as polymer ' blooming'. CONCLUSIONS: For the first time, in situ detection of analytes from a thermoset polymer coating was accomplished without any sample preparation, providing advantages over traditional extraction-analysis approaches and some contemporary ambient MS methods. Detection of HALS and polymer degradation products such as melamine provides insight into the mechanisms by which degradation occurs and suggests LESA-MS is a powerful new tool for polymer analysis. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to 1100 0C at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the fabrication of nanostructured copper electrodes using a simple potential cycling protocol that involves oxidation and reduction of the surface in an alkaline solution. It was found that the inclusion of additives, such as benzyl alcohol and phenylacetic acid, has a profound effect on the surface oxidation process and the subsequent reduction of these oxides. This results in not only a morphology change, but also affects the electrocatalytic performance of the electrode for the reduction of nitrate ions. In all cases, the electrocatalytic performance of the restructured electrodes was significantly enhanced compared with the unmodified electrode. The most promising material was formed when phenylacetic acid was used as the additive. In addition, the reduction of residual oxides on the surface after the modification procedure to expose freshly active reaction sites on the surface before nitrate reduction was found to be a significant factor in dictating the overall electrocatalytic activity. It is envisaged that this approach offers an interesting way to fabricate other nanostructured electrode surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The greatest attraction to using carambola (Averrhoa carambola L.) in the fresh-cut market is the star shape that the fruit presents after a transverse cut. Carambola is well-suited for minimal processing, but cut surface browning is a main cause of deterioration. This problem is exacerbated as a result of mechanical injuries occurring during processing and is mainly induced by the leakage of phenolic compounds from the vacuole and subsequent oxidation by polyphenol oxidase (PPO) (Augustin et al., 1985). The use of browning inhibitors in processed fruits is restricted to compounds that are non-toxic, ‘wholesome’, and that do not adversely affect taste and flavour (Gil et al., 1998). In the past, browning was mainly controlled by the action of sulphites, but the use of this compound has declined due to allergic reactions in asthmatics (Weller et al., 1995). The shelf life of fresh-cut products may be extended by a combination of oxygen exclusion and the use of enzymatic browning inhibitors. The objectives of this work were to determine the effects of: (1) post-cutting chemical treatments of ascorbic, citric, oxalic acids, and EDTA-Ca; (2) atmospheric modification; and (3) combinations of the above, on the shelf life of carambola slices based on appearance, colour and polyphenol oxidase activity