979 resultados para Detecting rice tungro viruses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An attempt was made to produce sensitive and specific polyclonal antisera against the viruses causing rice tungro disease, and to assess their potential for use in simple diagnostic tests. Using a multiple, sequential injection procedure, seven batches of polyclonal antisera against rice tungro bacilliform virus (RTBV) and rice tungro spherical virus (RTSV) were produced. These were characterized for their sensitivity and specificity using ring-interface precipitin test and double antibody sandwich (DAS) ELISA. Thirty-one weeks after the first immunization, antiserum batch B6b for RTBV showed the highest ring interface titer (DEP = 1:1920). For RTSV, batches S3, S4b and S5b all had similar titres (DEP = 1:640). In DAS-ELISA, however, significant differences among purified antisera (IgG) batches were observed only at IgG dilution of 10-3. At that dilution, IgGB4b showed the greatest sensitivity, while IgGS3 showed greatest sensitivity for RTSV. When all IgG batches were tested against 11 tungro field isolates (dual RTBV-RTSV infections) at sample dilution of 1:10, IgGB4b and IgGB6b for RTBV and IgGS3 and IgGS6b for RTSV performed equally well. However, after cross adsorption with healthy plant extracts in a specially prepared healthy plant-Sepharose affinity column, only IgGB6b could be used specifically to detect RTBV in a simple tissue-print assay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many well-known specialists have contributed to this book which presents for the first time an in-depth look at the viruses, their satellites and the retrotransposons infecting (or occuring in) one plant family: the Poaceae (Gramineae). After molecular and biological descriptions of the viruses to species level, virus diseases are presented by crop: barley, maize, rice, rye, sorghum, sugarcane, triticales, wheats, forage, ornamental and lawn. A detailed index of the viruses and taxonomic lists will help readers in the search for information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rice tungro bacilliform virus (RTBV) is one of the two viruses that cause tungro disease. Four RTBV strains maintained in the greenhouse for 4 years, G1, G2, Ic, and L, were differentiated by restriction fragment length polymorphism (RFLP) analysis of the native viral DNA. Although strains G1 and Ic had identical restriction patterns when cleaved with Pst1, BamHI, EcoRI, and EcoRV, they can be differentiated from strains G2 and L by EcoRI and EcoRV digestion. These same endonucleases also differentiate strain G2 from strain L. When total DNA extracts from infected plants were used instead of viral DNA, and digested with EcoRV, identical restriction patterns for each strain (G2 and L) were obtained from roots, leaves, and leaf sheaths of infected plants. The restriction patterns were consistent from plant to plant, in different varieties, and at different times after inoculation. This technique can be used to differentiate RTBV strains and determine the variability of a large number of field samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RTSV is one of two viruses that cause tungro disease. RTSV is independently transmitted, whereas the other virus, rice tungro bacilliform virus (RTBV), is dependent on RTSV for its transmission by the green leafhopper (GLH), Nephotettix virescens. The occurrence and spread of tungro disease therefore depend on the presence of RTSV in the field. Resistance to RTSV infection would slow down the spread of the disease.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A system for agroinoculating rice tungro bacilliform virus (RTBV), one of the two viruses of the rice tungro disease complex, has been optimised. A nontumour-inducing strain of Agrobacterium (pGV3850) was used in order to conform with biosafety regulations. Fourteen-day-old seedlings survived the mechanical damage of the technique and were still young enough to support virus replication. The level of the bacterial inoculum was important to obtain maximum infection, with a high inoculum level (0.5 × 1012 cells/ml) resulting in up to 100% infection of a susceptible variety that was comparable with infection by insect transmission. Agroinoculation with RTBV was successful for all three rice cultivarss tested; TN1 (tungro susceptible), Balimau Putih (tungro tolerant), and IR26 (RTSV and vector resistant). Agroinoculation enables resistance to RTBV to be distinguished from resistance to the leafhopper vector of the virus, and should prove useful in screening rice germplasm, breeding materials, and transgenic rice lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surveys were conducted in the Philippines from 1995 to 1997 to examine relationships between production environment variables (agroecosystem, synchrony of planting, and varieties planted) and the occurrence of rice tungro disease epidemics using correspondence analyses. The sites covered were Isabela, Nueva Ecija, North Cotabato, and Bohol provinces as well as Bicol region. Tungro disease incidence in farmers’ fields was assessed visually based on typical symptoms. In addition, leaf samples were collected from each field and indexed serologically by enzyme-linked immunosorbent assay for the presence of Rice tungro bacilliform (RTBV) and Rice tungro spherical (RTSV) viruses. Thus, relationships between the production environment variables and four disease variables — visual incidence and double RTBV and RTSV, single RTSV, and single RTBV infections — were examined. A higher association was observed between site and varieties planted as well as site and synchrony of planting than between site and agroecosystem or site and disease variables (visual incidence, double RTBV and RTSV and single RTSV infections). Disease variables depended on both varieties planted and synchrony of planting and correspondence analysis revealed that the low disease incidence in Nueva Ecija was associated with synchronous planting while the high disease incidence in Isabela was associated with the planting of susceptible varieties and asynchronous planting. Such findings suggest that the relationship between the last two factors at a given site is critical to predicting tungro occurrence. Moreover, correspondence analysis of the relationship among disease variables revealed that tungro incidence is associated with not only double RTBV and RTSV infections but also single RTSV infections. Implications of these results on tungro epidemiology and management are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Balimau Putih [an Indonesian cultivar tolerant to rice tungro bacilliform virus (RTBV)] was crossed with IR64 (RTBV, susceptible variety) to produce the three filial generations F1, F2 and F3. Agroinoculation was used to introduce RTBV into the test plants. RTBV tolerance was based on the RTBV level in plants by analysis of coat protein using enzyme-linked immunosorbent assay. The level of RTBV in cv. Balimau Putih was significantly lower than that of IR64 and the susceptible control, Taichung Native 1. Mean RTBV levels of the F1, F2 and F3 populations were comparable with one another and with the average of the parents. Results indicate that there was no dominance and an additive gene action may control the expression of tolerance to RTBV. Tolerance based on the level of RTBV coat protein was highly heritable (0.67) as estimated using the mean values of F3 lines, suggesting that selection for tolerance to RTBV can be performed in the early selfing generations using the technique employed in this study. The RTBV level had a negative correlation with plant height, but positive relationship with disease index value

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis by enzyme-linked immunosorbent assay showed that Rice tungro bacilliform virus (RTBV) accumulated in a cyclic pattern from early to late stages of infection in tungro-susceptible variety, Taichung Native 1 (TN1), and resistant variety, Balimau Putih, singly infected with RTBV or co-infected with RTBV+Rice tungro spherical virus (RTSV). These changes in virus accumulation resulted in differences in RTBV levels and incidence of infection. The virus levels were expressed relative to those of the susceptible variety and the incidence of infection was assessed at different weeks after inoculation. At a particular time point, RTBV levels in TN1 or Balimau Putih singly infected with RTBV were not significantly different from the virus level in plants co-infected with RTBV+RTSV. The relative RTBV levels in Balimau Putih either singly infected with RTBV or co-infected with RTBV+RTSV were significantly lower than those in TN1. The incidence of RTBV infection varied at different times in Balimau Putih but not in TN1, and to determine the actual infection, the number of plants that became infected at least once anytime during the 4wk observation period was considered. Considering the changes in RTBV accumulation, new parameters for analyzing RTBV resistance were established. Based on these parameters, Balimau Putih was characterized having resistance to virus accumulation although the actual incidence of infection was >75%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many farmers in South and Southeast Asia describe rice tungro disease as a cancer disease because of the severe damage it causes and the difficulty of controlling it (121). As the most important of the 14 rice viral diseases, tungro was first recognized as a leafhopper-transmitted virus disease in 1963 (88). However, tungro, which means “degenerated growth” in a Filipino dialect, has a much longer history. It is almost certain that tungro was responsible for a disease outbreak that occurred in 1859 in Indonesia, which was referred to at the time as mentek (83). In the past, a variety of names has been given to tungro, including accep na pula in the Philippines, penyakit merah in Malaysia, and yelloworange leaf in Thailand (83).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differentiation of rice tungro spherical virus variants by RTPCR and RFLP tungro bacilliform virus (RTBV), the other causal agent, which causes the symptoms. RTSV is a single-stranded RNA virus of 12,180 nucleotides (Hull 1996).

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DNA of three biological variants, G1, Ic and G2, which originated from the same greenhouse isolate of rice tungro bacilliform virus (RTBV) at the International Rice Research Institute (IRRI), was cloned and sequenced. Comparison of the sequences revealed small differences in genome sizes. The variants were between 95 and 99% identical at the nucleotide and amino acid levels. Alignment of the three genome sequences with those of three published RTBV sequences (Phi-1, Phi-2 and Phi-3) revealed numerous nucleotide substitutions and some insertions and deletions. The published RTBV sequences originated from the same greenhouse isolate at IRRI 20, 11 and 9 years ago. All open reading frames (ORFs) and known functional domains were conserved across the six variants. The cysteine-rich region of ORF3 showed the greatest variation. When the six DNA sequences from IRRI were compared with that of an isolate from Malaysia (Serdang), similar changes were observed in the cysteine-rich region in addition to other nucleotide substitutions and deletions across the genome. The aligned nucleotide sequences of the IRRI variants and Serdang were used to analyse phylogenetic relationships by the bootstrapped parsimony, distance and maximum-likelihood methods. The isolates clustered in three groups: Serdang alone; Ic and G1; and Phi-1, Phi-2, Phi-3 and G2. The distribution of phylogenetically informative residues in the IRRI sequences shared with the Serdang sequence and the differing tree topologies for segments of the genome suggested that recombination, as well as substitutions and insertions or deletions, has played a role in the evolution of RTBV variants. The significance and implications of these evolutionary forces are discussed in comparison with badnaviruses and caulimoviruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete nucleotide sequence of rice tungro spherical virus (RTSV) strain Vt6, originally from Mindanao, the Philippines, with higher virulence to resistant rice cultivars, was determined and compared with the published sequence for the Philippine-type strain A (RTSV-A-Shen). It was reported that RTSV-A was not able to infect a rice resistant cultivar TKM 6 (10). RTSV-Vt6 and RTSV-A-Shen share 90% and 95% homology at nucleotide and amino-acid levels, respectively. The N-terminal leader sequence of RTSV-Vt6 contained a 39-amino acids-region (positions 65 to 103) which was totally different from that of RTSV-A-Shen; the difference resulted from frame shifting by nucleotide insertions and deletions. To confirm the amino-acid sequence differences of the leader polypeptide, the same region was cloned and sequenced using a newly obtained variant of RTSV-type 6, which had been collected in the field of IRRI, and seven field isolates from Mindanao, the Philippines. Since all the sequences of the target region are identical to that of the Vt6 leader polypeptide, the sequence difference in the leader region seems not to correlate with the virulence of Vt6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two adjacent genes of coat protein 1 and 2 of rice tungro spherical virus (RTSV) were amplified from total RNA extracts of serologically indistinguishable field isolates from the Philippines and Indonesia, using reverse transcriptase polymerase chain reaction (RT-PCR). Digestion with HindIII and BstYI restriction endonucleases differentiated the amplified DNA products into eight distinct coat protein genotypes. These genotypes were then used as indicators of virus diversity in the field. Inter- and intra-site diversities were determined over three cropping seasons. At each of the sites surveyed, one or two main genotypes prevailed together with other related minor or mixed genotypes that did not replace the main genotype over the sampling time. The cluster of genotypes found at the Philippines sites was significantly different from the one at the Indonesia sites, suggesting geographic isolation for virus populations. Phylogenetic studies based on the nucleotide sequences of 38 selected isolates confirm the spatial distribution of RTSV virus populations but show that gene flow may occur between populations. Under the present conditions, rice varieties do not seem to exert selective pressure on the virus populations. Based on the selective constraints in the coat protein amino acid sequences and the virus genetic composition per site, a negative selection model followed by random-sampling events due to vector transmissions is proposed to explain the inter-site diversity observed