3 resultados para Desingularization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let F be a singular Riemannian foliation on a compact Riemannian manifold M. By successive blow-ups along the strata of F we construct a regular Riemannian foliation (F) over cap on a compact Riemannian manifold (M) over cap and a desingularization map (rho) over cap : (M) over cap -> M that projects leaves of (F) over cap into leaves of F. This result generalizes a previous result due to Molino for the particular case of a singular Riemannian foliation whose leaves were the closure of leaves of a regular Riemannian foliation. We also prove that, if the leaves of F are compact, then, for each small epsilon > 0, we can find (M) over cap and (F) over cap so that the desingularization map induces an epsilon-isometry between M/F and (M) over cap/(F) over cap. This implies in particular that the space of leaves M/F is a Gromov-Hausdorff limit of a sequence of Riemannian orbifolds {((M) over cap (n)/(F) over cap (n))}.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct the Chow motive modelling intersection co-homology of a proper surface. We then study its functoriality properties. Using Murre's decompositions of the motive of a desingularization into KÄunneth components [Mr1], we show that such decompositions exist also for the intersection motive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2002, van der Geer and van der Vlugt gave explicit equations for an asymptotically good tower of curves over the field F8. In this paper, we will present a method for constructing Goppa codes from these curves as well as explicit constructions for the third level of the tower. The approach is to find an associated plane curve for each curve in the tower and then to use the algorithms of Haché and Le Brigand to find the corresponding Goppa codes.