1000 resultados para Denture base reline
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: This study evaluated the effect of disinfection by immersion in sodium perborate (50 degrees C/10 min) or microwave irradiation (650 W/6 min) on the linear dimensional change (LDC) of four reline resins (Kooliner-K, New Truliner-N, Tokuso Rebase Fast-T, Ufi Gel Hard-U) and one heat-polymerizing denture base resin (Lucitone 550-L). Methods: Specimens (50.0 mm diameter, 0.5 mm thickness) were made using a split mold with reference points, and divided into two controls and four test groups (u = 8). The distances between the points were measured on the mold (baseline readings), and compared to those obtained from the specimens after: polymerization or immersion in water (37 degrees C) for 7 days (controls); 2 or 7 cycles of disinfection by immersion or microwave irradiation. Results: the two-way ANOVA and Tukey's test (alpha = 0.05) showed that microwave disinfection significantly increased the mean LDC of materials L (-1.43%), N (-1.27%) and K (-1.06%). Material N also exhibited a significant increase in LDC after two cycles of chemical disinfection (-0.73%). For U (-0.47%) and T (-0.21%) materials, no significant changes in LDC were found. Conclusions: Microwave disinfection increases the shrinkage of materials L, N, and K. The dimensional stability of resins U and T was not affected by the disinfection methods evaluated. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Direct relining of dentures made with hard chairside reline resins is faster than laboratory-processed reline systems and the patient is not without the prosthesis for the time necessary to perform the laboratory procedures. However, a weak bond between the autopolymerizing acrylic reline resins and the denture base material has been observed. This study evaluated the effect of six different surface treatments on the bond strength between a hard chairside reline acrylic resin and ia heat-cured acrylic resin. Specimens of the heat-cured acrylic resin were divided into seven groups. one of these groups remained intact. In the other groups, a 10-mm square section was removed from the centre of each specimen. The bonding surfaces were then treated with (i) methyl methacrylate monomer, (ii) isobutyl methacrylate monomer, (iii) chloroform, (iv) acetone, (v) experimental adhesive and (vi) no surface treatment-control group. Kooliner acrylic resin was packed,into the square sections and polymerized. The bonding strength was evaluated by a three-point loading test. The results were submitted to one-way analysis of variance (ANOVA) followed by a Tukey multiple range test at a 5% level of significance. No significant difference was found between the surface treatment with Lucitone 550 monomer or chloroform, but both were stronger than the majority of the other groups. The bond strength provided by all the surface treatments was lower than that of the intact heat-cured resin.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: To evaluate the effect of microwave disinfection on the flexural strength and Vickers hardness of 4 autopolymerized resins (Kooliner [K], Tokuso Rebase Fast [T], Ufi Gel Hard [U], and New Truliner [N]) and 1 denture base resin (Lucitone 550 [L]). Method and Materials: For each material, 48 specimens (64 x 10 x 3.3 mm) were made and divided into 6 equal groups (n = 8). In the control group, specimens were untreated. Before testing, specimens were immersed in 200 mL of distilled water and submitted to disinfection for 1 of the following irradiation times: 1, 2, 3, 4, or 5 minutes. The irradiation procedure was performed twice. The flexural strength was determined using a testing machine MTS-810 and measurements of Vickers hardness were made on Micromet 2100. The values were submitted to ANOVA and Tukey's test (P = .05). Results: The K material showed a significant increase (P = .0010) in flexural strength following 5 minutes of disinfection compared to control specimens. The flexural strength mean values of materials T, U, and N were not significantly affected (P > .05) by disinfection. Compared to the control group, the K material showed a significant increase in hardness (P < .001) following disinfection for 3, 4, and 5 minutes. For material U, disinfection for 4 and 5 minutes produced specimens with significantly increased hardness values (P < .001) compared to the control group. For material N, disinfection for 5 minutes resulted in significantly higher hardness values (P < .001) than the control group. Conclusion: Regardless of the irradiation time, the flexural strength and hardness of the materials evaluated were not detrimentally affected by microwave disinfection. (Quintessence Int 2008;39:833-840)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Statement of problem. Adverse reactions to the materials used for the fabrication and reline of removable denture bases have been observed.Purpose. The purpose of this study was to systematically review the published literature on the cytotoxicity of denture base and hard reline materials.Material and methods. MEDLINE via PubMed, Google Scholar, and Scopus databases for the period January 1979 to December 2009 were searched with the following key words: (biocompatibility OR cytotoxic* OR allergy OR burning mouth OR cell culture techniques) and (acrylic resins OR denture OR monomer OR relin* OR denture liners). The inclusion criteria included in vitro studies using either animal or human cells, in which the cytotoxicity of the denture base and hard chairside reline resins was tested. Studies of resilient lining materials and those that evaluated other parameters such as genotoxicity and mutagenicity were excluded. Articles published in the English language and in peer-reviewed journals focusing on the cytotoxicity of these materials were reviewed.Results. A total of 1443 articles were identified through the search. From these, 20 studies were judged to meet the selection criteria and were included in the review. In the majority of the studies, continuous cell lines were exposed to eluates of specimens made from the materials, and mitochondrial activity was used to estimate cell viability. The tested acrylic resins were grouped according to 5 major categories: (1) heat-polymerized; (2) microwave-polymerized; (3) autopolymerizing; (4) light-polymerized; and (5) hard chairside reliners.Conclusions. This review provided some evidence that the heat-polymerized resins showed lower cytotoxic effects than autopolymerizing denture base acrylic resins and light or dual polymerized reline resins. However, because of the large number of variables in the reviewed literature, a definitive conclusion could not be drawn. (J Prosthet Dent 2012;107:114-127)
Resumo:
Background: This study evaluated the effect of disinfection by immersion and microwave irradiation on the roughness of one denture base resin (Lucitone-L) and five relining materials, three hard (Tokuyama Rebase II-TR, New Truliner-NT, Ufigel Hard-UH) and two resilient (Trusoft-T, Sofreliner-S).Methods: Fifty specimens were made and divided into groups: CL2 specimens were brushed with 4% chlorhexidine (1 min), immersed in the same solution (10 min) and immersed in water (3 min); MW2 specimens were immersed in water and microwave irradiated (650W; 6 min); CL2 and MW2 specimens were disinfected twice; CL7 and MW7 specimens were submitted to seven cycles using chlorhexidine or microwave irradiation, respectively; W specimens were not disinfected and remained in water (37 degrees C; 7 days).Results: Results were statistically analysed (p = 0.05) and revealed that, at baseline, the highest mean value was observed for T (p < 0.001). Material NT showed increase in roughness after the first (p = 0.003), second (p = 0.001), seventh (p = 0.000) cycles of microwave disinfection and after 7 days of immersion in water (p = 0.033).Conclusions: Resilient liner S presented significant increase in roughness after the second cycle of disinfection with chlorhexidine (p = 0.003). Material T exhibited significantly decreased roughness in group W (p = 0.010), while microwaving produced severe alterations on its surface.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study evaluated the influence of microwave disinfection on the strength of intact and relined denture bases. Water sorption and solubility were also evaluated. A heat-polymerized acrylic resin (Lucitone 550) was used to construct 4-mm-thick (n = 40) and 2-mm-thick (n = 160) denture bases. Denture bases (2mm) were relined with an autopolymerizing resin (Tokuso Rebase Fast, Ufi Gel Hard, Kooliner, or New Truliner). Specimens were divided into four groups (n = 10): without treatment, one or seven cycles of microwave disinfection (650 W for 6 min), and water storage at 37 degrees C for 7 days. Specimens were vertically loaded (5 mm/min) until failure. Disc-shaped specimens (50 min x 0.5 mm) were fabricated (n = 10) to evaluate water sorption and solubility. Data on maximum fracture load (N), deflection (%), and solubility (%) were analyzed by two-way analysis of variance and Student-Newman-Keuls tests (alpha = 0.05). One cycle of microwave disinfection decreased the deflection at fracture and fracture energy of Tokuso Rebase Fast and New Truliner specimens. The strength of denture bases microwaved daily for 7 days was similar to the strength of those immersed in water for 7 days. Microwave disinfection increased the water sorption of all materials and affected the solubility of the reline materials. (C) 2007 Wiley Periodicals, Inc.