75 resultados para Deformability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report that the average rotation speed of optically trapped crenated erythrocytes is direct signature of their membrane deformability. When placed in hypertonic buffer, discocytic erythrocytes are subjected to crenation. The deformation of cells brings in chirality and asymmetry in shape that makes them rotate under the scattering force of a linearly polarized optical trap. A change in the deformability of the erythrocytes, due to any internal or environmental factor, affects the rotation speed of the trapped crenated cells. Here we show how the increment in erythrocyte membrane rigidity with adsorption of Ca++ ions can be exhibited through this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disease conditions like malaria, sickle cell anemia, diabetes mellitus, cancer, etc., are known to significantly alter the deformability of certain types of cells (red blood cells, white blood cells, circulating tumor cells, etc.). To determine the cellular deformability, techniques like micropipette aspiration, atomic force microscopy, optical tweezers, quantitative phase imaging have been developed. Many of these techniques have an advantage of determining the single cell deformability with ultrahigh precision. However, the suitability of these techniques for the realization of a deformability based diagnostic tool is questionable as they are expensive and extremely slow to operate on a huge population of cells. In this paper, we propose a technique for high-throughput (800 cells/s) determination of cellular deformability on a single cell basis. This technique involves capturing the image(s) of cells in flow that have undergone deformation under the influence of shear gradient generated by the fluid flowing through the microfluidic channels. Deformability indices of these cells can be computed by performing morphological operations on these images. We demonstrate the applicability of this technique for examining the deformability index on healthy, diabetic, and sphered red blood cells. We believe that this technique has a strong role to play in the realization of a potential tool that uses deformability as one of the important criteria in disease diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria dynamics is crucial to many biological processes such as mitochondria fusion and fission, which is highly correlated to the mechanics of single mitochondria. However, the mechanobiological coupling of mitochondria has been poorly understood. Here membrane deformability and membrane tension of individual mitochondria isolated from MtDsRed labeled human embryonic T-Rex-293 kidney cells were measured using a micropipette aspiration assay. The results demonstrated that membrane deformation of isolated mitochondria exhibited an elastic transition phase followed by an equilibrium phase, and mitochondrial membrane tension was proportional to the area compressibility. It was also indicated that mitochondrial membrane deformability was significantly affected by physical chemical factors such as osmotic pressure or pH value, and was further correlated to mitochondrial functionality in different respiratory states and Ca2+ regulation. These findings provide a new insight into understanding the mechanical regulation of mitochondrial physiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective-To determine the capacity of inflammatory mediators tumor necrosis factor-alpha (TNF-alpha), interleukin-8 (IL-8), platelet-activating factor (PAF), lipopolysaccharide (LPS), and leukotoxin to prime, activate, or alter deformability of adult bovine neutrophils.Sample Population-Blood collected from 5 healthy adult Holstein cows.Procedure-Isolated neutrophils or whole brood was incubated with TNF-alpha, IL-8, PAF, LPS, or leukotoxin, and neutrophil chemiluminescence, degranulation, deformability, shape change, CD11b expression, and size distribution was measured.Results-incubation with TNF-alpha, IL-8; PAF, and IFS primed neutrophils for oxygen radical release but caused minimal oxygen radical release by themselves. None of the inflammatory mediators induced degranulation. Incubation with TNF-alpha and PAF resulted in a decrease in neutrophil deformability and induced shape change in neutrophils. incubation with PAF consistently resulted in an increase in neutrophil size as measured by use of flow cytometry. Only IL-8 caused an increase in expression of CD11b by neutrophils.Conclusions and Clinical Relevance-Inflammatory mediators tested had minimal effects on neutrophil oxygen radical production or degranulation but did prime neutrophils for oxygen radical production. Incubation with PAF and TNF-alpha caused a decrease in neutrophil deformability and altered neutrophil shape and size. Results of our study indicate that PAF- and TNF-alpha-induced changes in neutrophil deformability and size may cause integrin- and setectin-independent trapping of neutrophils in the lungs of cattle with pneumonic pasteurellosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cone Loading Test (CLT) consists of the execution of a load test on the piezocone probe in conjunction with the CPT test. The CLT yields the modulus ECLT, a parameter that can be used in the estimative of foundation settlement. It is also presented here the interpretation and the process to determine ECLT values from the stress-displacement curves obtained from cone loading tests. Several CLT tests were conducted at the experimental research site of São Paulo State University, Bauru-SP-Brazil. The geotechnical profile at the studied site is a brown to bright red slightly clayey fine sand, a tropical soil common to this region which is lateritic, unsaturated and collapsible. The results of CLT tests satisfactorily represent the behavior of the investigated soil. The penetrometric modulus ECLT for each depth was calculated considering the elastic behavior in the initial linear segment of the soil stress-strain curve. The ECLT moduli obtained for the various tests were compared to moduli obtained from PMT and DMT test results performed at same studied site. The shear modulus degradation curves obtained from the CLT tests are also presented. The comparison to PMT and DMT results indicates the CLT test is a viable complementary test to the CPT in the quest for better understanding stress-strain behavior of soils. Further, the CLT test provides a graphic visualization of the degradation of the shear modulus with increasing levels of strain. As a hybrid geotechnical test, CPT+CLT can be valuable in the investigation of non-conventional collapsible soils, whose literature lack reference parameters for the prediction of settlement in the design of foundations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: Suppression of erythropoiesis due to low plasma erythropoietin levels is an important factor in the development of anaemia of prematurity. Premature infants may therefore be treated with recombinant human erythropoietin (rhEPO). This prospective, randomised and controlled study was designed to find out whether rhEPO treatment improves erythrocyte deformability in preterm infants. METHODS: Sixteen infants were treated with rhEPO (250 IU/kg three times weekly) a total of 15 times beginning on day of life 5 whereas fifteen infants served as controls. Haemoglobin concentration, haematocrit, reticulocyte count, ferritin level and erythrocyte deformability were measured on days 5, 14, 28, 42 and 63. Erythrocyte elongation was determined as an indicator of erythrocyte deformability using a shear stress diffractometer (Rheodyn SSD) at shear forces of 0.3 to 60 Pa. RESULTS: Haemoglobin concentration was significantly higher on days 28 and 42 and reticulocyte percentage on day 28 in the rhEPO group compared to the controls. Serum ferritin was lower in the rhEPO group on day 28. Erythrocyte deformability was significantly increased on days 28 and 42 in the infants receiving rhEPO. We found a strong relationship between erythrocyte elongation and reticulocyte count. CONCLUSION: RhEPO markedly increases the erythropoiesis in preterm infants in the critical first weeks of life and the anaemia of prematurity is obviously reduced. The erythrocyte deformability improved under rhEPO treatment. Erythrocyte deformability was significantly related to the reticulocyte count indicating that the improvement of erythrocyte deformability was due to the formation of well-deformable young erythrocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The actin cytoskeleton plays a key role in the deformability of the cell and in mechanosensing. Here we analyze the contributions of three major actin cross-linking proteins, myosin II, a-actinin and filamin, to cell deformability, by using micropipette aspiration of Dictyostelium cells. We examine the applicability of three simple mechanical models: for small deformation, linear viscoelasticity and drop of liquid with a tense cortex; and for large deformation, a Newtonian viscous fluid. For these models, we have derived linearized equations and we provide a novel, straightforward methodology to analyze the experiments. This methodology allowed us to differentiate the effects of the cross-linking proteins in the different regimes of deformation. Our results confirm some previous observations and suggest important relations between the molecular characteristics of the actin-binding proteins and the cell behavior: the effect of myosin is explained in terms of the relation between the lifetime of the bond to actin and the resistive force; the presence of a-actinin obstructs the deformation of the cytoskeleton, presumably mainly due to the higher molecular stiffness and to the lower dissociation rate constants; and filamin contributes critically to the global connectivity of the network, possibly by rapidly turning over crosslinks during the remodeling of the cytoskeletal network, thanks to the higher rate constants, flexibility and larger size. The results suggest a sophisticated relationship between the expression levels of actinbinding proteins, deformability and mechanosensing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows the analysis results obtained from more than 200 finite element method (FEM) models used to calculate the settlement of a foundation resting on two soils of differing deformability. The analysis considers such different parameters as the foundation geometry, the percentage of each soil in contact with the foundation base and the ratio of the soils’ elastic moduli. From the described analysis, it is concluded that the maximum settlement of the foundation, calculated by assuming that the foundation is completely resting on the most deformable soil, can be correlated with the settlement calculated by FEM models through a correction coefficient named “settlement reduction factor” (α). As a consequence, a novel expression is proposed for calculating the real settlement of a foundation resting on two soils of different deformability with maximum errors lower than 1.57%, as demonstrated by the statistical analysis carried out. A guide for the application of the proposed simple method is also explained in the paper. Finally, the proposed methodology has been validated using settlement data from an instrumented foundation, indicating that this is a simple, reliable and quick method which allows the computation of the maximum elastic settlement of a raft foundation, evaluates its suitability and optimises its selection process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Red Blood Cells (RBCs) exhibit different types of motions and different deformed shapes, when they move through capillaries. RBCs can travel through capillaries having smaller diameters than RBCs’ diameter, due to the capacity of high deformability of the viscoelastic RBC membrane. The motion and the steady state shape of the RBCs depend on many factors, such as the geometrical parameters of the microvessel through which blood flows, the RBC membrane bending stiffness and the flow velocity. In this study, the effect of the RBC’s membrane stiffness on the deformation of a single RBC in a stenosed capillary is comprehensively examined. Smoothed Particle Hydrodynamics (SPH) in combination with the two-dimensional spring network membrane model is used to investigate the motion and the deformation property of the RBC. The simulation results demonstrate that the membrane bending stiffness of the RBC has a significant impact on the RBCs’ deformability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lamins are intermediate filament proteins of type V constituting a nuclear lamina or filamentous meshwork which lines the nucleoplasmic side of the inner nuclear membrane. This protein mesh provides a supporting scaffold for the nuclear envelope and tethers interphase chromosome to the nuclear periphery. Mutations of mainly A-type lamins are found to be causative for at least 11 human diseases collectively termed as laminopathies majority of which are characterised by aberrant nuclei with altered structural rigidity, deformability and poor mechanotransduction behaviour. But the investigation of viscoelastic behavior of lamin A continues to elude the field. In order to address this problem, we hereby present the very first report on viscoelastic properties of wild type human lamin A and some of its mutants linked with Dilated cardiomyopathy (DCM) using quantitative rheological measurements. We observed a dramatic strain-softening effect on lamin A network as an outcome of the strain amplitude sweep measurements which could arise from the large compliance of the quasi-cross-links in the network or that of the lamin A rods. In addition, the drastic stiffening of the differential elastic moduli on superposition of rotational and oscillatory shear stress reflect the increase in the stiffness of the laterally associated lamin A rods. These findings present a preliminary insight into distinct biomechanical properties of wild type lamin A protein and its mutants which in turn revealed interesting differences.