797 resultados para Decision-Making Object
Resumo:
The operating model of knowledge quantum engineering for identification and prognostic decision- making in conditions of α-indeterminacy is suggested in the article. The synthesized operating model solves three basic tasks: Аt-task to formalize tk-knowledge; Вt-task to recognize (identify) objects according to observed results; Сt-task to extrapolate (prognosticate) the observed results. Operating derivation of identification and prognostic decisions using authentic different-level algorithmic knowledge quantum (using tRAKZ-method) assumes synthesis of authentic knowledge quantum database (BtkZ) using induction operator as a system of implicative laws, and then using deduction operator according to the observed tk-knowledge and BtkZ a derivation of identification or prognostic decisions in a form of new tk-knowledge.
Resumo:
Information systems have developed to the stage that there is plenty of data available in most organisations but there are still major problems in turning that data into information for management decision making. This thesis argues that the link between decision support information and transaction processing data should be through a common object model which reflects the real world of the organisation and encompasses the artefacts of the information system. The CORD (Collections, Objects, Roles and Domains) model is developed which is richer in appropriate modelling abstractions than current Object Models. A flexible Object Prototyping tool based on a Semantic Data Storage Manager has been developed which enables a variety of models to be stored and experimented with. A statistical summary table model COST (Collections of Objects Statistical Table) has been developed within CORD and is shown to be adequate to meet the modelling needs of Decision Support and Executive Information Systems. The COST model is supported by a statistical table creator and editor COSTed which is also built on top of the Object Prototyper and uses the CORD model to manage its metadata.
Resumo:
A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific sub-regions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.
Resumo:
The use of UAVs for remote sensing tasks; e.g. agriculture, search and rescue is increasing. The ability for UAVs to autonomously find a target and perform on-board decision making, such as descending to a new altitude or landing next to a target is a desired capability. Computer-vision functionality allows the Unmanned Aerial Vehicle (UAV) to follow a designated flight plan, detect an object of interest, and change its planned path. In this paper we describe a low cost and an open source system where all image processing is achieved on-board the UAV using a Raspberry Pi 2 microprocessor interfaced with a camera. The Raspberry Pi and the autopilot are physically connected through serial and communicate via MAVProxy. The Raspberry Pi continuously monitors the flight path in real time through USB camera module. The algorithm checks whether the target is captured or not. If the target is detected, the position of the object in frame is represented in Cartesian coordinates and converted into estimate GPS coordinates. In parallel, the autopilot receives the target location approximate GPS and makes a decision to guide the UAV to a new location. This system also has potential uses in the field of Precision Agriculture, plant pest detection and disease outbreaks which cause detrimental financial damage to crop yields if not detected early on. Results show the algorithm is accurate to detect 99% of object of interest and the UAV is capable of navigation and doing on-board decision making.
Resumo:
When brain mechanism carry out motion integration and segmentation processes that compute unambiguous global motion percepts from ambiguous local motion signals? Consider, for example, a deer running at variable speeds behind forest cover. The forest cover is an occluder that creates apertures through which fragments of the deer's motion signals are intermittently experienced. The brain coherently groups these fragments into a trackable percept of the deer in its trajectory. Form and motion processes are needed to accomplish this using feedforward and feedback interactions both within and across cortical processing streams. All the cortical areas V1, V2, MT, and MST are involved in these interactions. Figure-ground processes in the form stream through V2, such as the seperation of occluding boundaries of the forest cover from the boundaries of the deer, select the motion signals which determine global object motion percepts in the motion stream through MT. Sparse, but unambiguous, feauture tracking signals are amplified before they propogate across position and are intergrated with far more numerous ambiguous motion signals. Figure-ground and integration processes together determine the global percept. A neural model predicts the processing stages that embody these form and motion interactions. Model concepts and data are summarized about motion grouping across apertures in response to a wide variety of displays, and probabilistic decision making in parietal cortex in response to random dot displays.
Resumo:
Active monitoring and problem of non-stable of sound signal parameters in the regime of piling up response signal of environment is under consideration. Math model of testing object by set of weak stationary dynamic actions is offered. The response of structures to the set of signals is under processing for getting important information about object condition in high frequency band. Making decision procedure by using researcher’s heuristic and aprioristic knowledge is discussed as well. As an example the result of numerical solution is given.
Resumo:
Structural monitoring and dynamic identification of the manmade and natural hazard objects is under consideration. Math model of testing object by set of weak stationary dynamic actions is offered. The response of structures to the set of signals is under processing for getting important information about object condition in high frequency band. Making decision procedure into active monitoring system is discussed as well. As an example the monitoring outcome of pillar-type monument is given.
Resumo:
The use of computing to support environmental planning and the development of land use models dates back to the late 1950s. The main thrust of computing applications, which by the early 1980s increasingly included the use of geospatial technologies, is their contribution to better planning and decision making. The computing tools and technologies are designed to enhance the planners’ capability to deal with complex environments and to plan for prosperous and livable communities. This paper examines the role of Information Technologies (IT) and particularly Internet Based Geographic Information Systems (Internet GIS) as spatial decision support systems to aid community based local decision making. The paper also covers the advantages and challenges of these internet based mapping applications and tools for collaborative decision making on the environment.
Resumo:
Since the industrial revolution, our world has experienced rapid and unplanned industrialization and urbanization. As a result, we have had to cope with serious environmental challenges. In this context, explanation of how smart urban ecosystems can emerge, gains a crucial importance. Capacity building and community involvement have always been the key issues in achieving sustainable development and enhancing urban ecosystems. By considering these, this paper looks at new approaches to increase public awareness of environmental decision making. This paper will discuss the role of Information and Communication Technologies (ICT), particularly Web-based Geographic Information Systems (Web-based GIS) as spatial decision support systems to aid public participatory environmental decision making. The paper also explores the potential and constraints of these web-based tools for collaborative decision making.