Neural Models of Motion Integration, Segmentation, and Probablistic Decision-Making


Autoria(s): Grossberg, Stephen
Data(s)

14/11/2011

14/11/2011

01/09/2007

Resumo

When brain mechanism carry out motion integration and segmentation processes that compute unambiguous global motion percepts from ambiguous local motion signals? Consider, for example, a deer running at variable speeds behind forest cover. The forest cover is an occluder that creates apertures through which fragments of the deer's motion signals are intermittently experienced. The brain coherently groups these fragments into a trackable percept of the deer in its trajectory. Form and motion processes are needed to accomplish this using feedforward and feedback interactions both within and across cortical processing streams. All the cortical areas V1, V2, MT, and MST are involved in these interactions. Figure-ground processes in the form stream through V2, such as the seperation of occluding boundaries of the forest cover from the boundaries of the deer, select the motion signals which determine global object motion percepts in the motion stream through MT. Sparse, but unambiguous, feauture tracking signals are amplified before they propogate across position and are intergrated with far more numerous ambiguous motion signals. Figure-ground and integration processes together determine the global percept. A neural model predicts the processing stages that embody these form and motion interactions. Model concepts and data are summarized about motion grouping across apertures in response to a wide variety of displays, and probabilistic decision making in parietal cortex in response to random dot displays.

National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624)

Identificador

http://hdl.handle.net/2144/1952

Idioma(s)

en_US

Publicador

Boston University Center for Adaptive Systems and Department of Cognitive and Neural Systems

Relação

BU CAS/CNS Technical Reports;CAS/CNS-TR-2007-014

Direitos

Copyright 2007 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.

Boston University Trustees

Palavras-Chave #Motion integration #Motion segmentation #Motion capture #Decision-making #Aperture problem #Feature tracking #Formation #Complementary computing #V1 #V2 #MT #MST #LIP #Neural networks
Tipo

Technical Report