960 resultados para Data Flows


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks (WSNs). The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism based on the cyclic extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) problem for a cluster-tree WSN, assuming bounded communication errors. The objective is to meet all end-to-end deadlines of a predefined set of time-bounded data flows while minimizing the energy consumption of the nodes by setting the TDCS period as long as possible. Sinceeach cluster is active only once during the period, the end-to-end delay of a given flow may span over several periods when there are the flows with opposite direction. The scheduling tool enables system designers to efficiently configure all required parameters of the IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs in the network design time. The performance evaluation of thescheduling tool shows that the problems with dozens of nodes can be solved while using optimal solvers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The simulation analysis is important approach to developing and evaluating the systems in terms of development time and cost. This paper demonstrates the application of Time Division Cluster Scheduling (TDCS) tool for the configuration of IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs using the simulation analysis, as an illustrative example that confirms the practical applicability of the tool. The simulation study analyses how the number of retransmissions impacts the reliability of data transmission, the energy consumption of the nodes and the end-to-end communication delay, based on the simulation model that was implemented in the Opnet Modeler. The configuration parameters of the network are obtained directly from the TDCS tool. The simulation results show that the number of retransmissions impacts the reliability, the energy consumption and the end-to-end delay, in a way that improving the one may degrade the others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increased data complexity and task interdependency associated with servitization represent significant barriers to its adoption. The outline of a business game is presented which demonstrates the increasing complexity of the management problem when moving through Base, Intermediate and Advanced levels of servitization. Linked data is proposed as an agile set of technologies, based on well established standards, for data exchange both in the game and more generally in supply chains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* The research was supported by INTAS 00-397 and 00-626 Projects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A substantial body of literature exists identifying factors contributing to under-performing Enterprise Resource Planning systems (ERPs), including poor communication, lack of executive support and user dissatisfaction (Calisir et al., 2009). Of particular interest is Momoh et al.’s (2010) recent review identifying poor data quality (DQ) as one of nine critical factors associated with ERP failure. DQ is central to ERP operating processes, ERP facilitated decision-making and inter-organizational cooperation (Batini et al., 2009). Crucial in ERP contexts is that the integrated, automated, process driven nature of ERP data flows can amplify DQ issues, compounding minor errors as they flow through the system (Haug et al., 2009; Xu et al., 2002). However, the growing appreciation of the importance of DQ in determining ERP success lacks research addressing the relationship between stakeholders’ requirements and perceptions of ERP DQ, perceived data utility and the impact of users’ treatment of data on ERP outcomes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

While data quality has been identified as a critical factor associated with enterprise resource planning (ERP) failure, the relationship between ERP stakeholders, the information they require and its relationship to ERP outcomes continues to be poorly understood. Applying stakeholder theory to the problem of ERP performance, we put forward a framework articulating the fundamental differences in the way users differentiate between ERP data quality and utility. We argue that the failure of ERPs to produce significant organisational outcomes can be attributed to conflict between stakeholder groups over whether the data contained within an ERP is of adequate ‘quality’. The framework provides guidance as how to manage data flows between stakeholders, offering insight into each of their specific data requirements. The framework provides support for the idea that stakeholder affiliation dictates the assumptions and core values held by individuals, driving their data needs and their perceptions of data quality and utility.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Body Area Network (BAN) is an emerging technology that focuses on monitoring physiological data in, on and around the human body. BAN technology permits wearable and implanted sensors to collect vital data about the human body and transmit it to other nodes via low-energy communication. In this paper, we investigate interactions in terms of data flows between parties involved in BANs under four different scenarios targeting outdoor and indoor medical environments: hospital, home, emergency and open areas. Based on these scenarios, we identify data flow requirements between BAN elements such as sensors and control units (CUs) and parties involved in BANs such as the patient, doctors, nurses and relatives. Identified requirements are used to generate BAN data flow models. Petri Nets (PNs) are used as the formal modelling language. We check the validity of the models and compare them with the existing related work. Finally, using the models, we identify communication and security requirements based on the most common active and passive attack scenarios.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Quality of Service (QoS) guarantees are required by an increasing number of applications to ensure a minimal level of fidelity in the delivery of application data units through the network. Application-level QoS does not necessarily follow from any transport-level QoS guarantees regarding the delivery of the individual cells (e.g. ATM cells) which comprise the application's data units. The distinction between application-level and transport-level QoS guarantees is due primarily to the fragmentation that occurs when transmitting large application data units (e.g. IP packets, or video frames) using much smaller network cells, whereby the partial delivery of a data unit is useless; and, bandwidth spent to partially transmit the data unit is wasted. The data units transmitted by an application may vary in size while being constant in rate, which results in a variable bit rate (VBR) data flow. That data flow requires QoS guarantees. Statistical multiplexing is inadequate, because no guarantees can be made and no firewall property exists between different data flows. In this paper, we present a novel resource management paradigm for the maintenance of application-level QoS for VBR flows. Our paradigm is based on Statistical Rate Monotonic Scheduling (SRMS), in which (1) each application generates its variable-size data units at a fixed rate, (2) the partial delivery of data units is of no value to the application, and (3) the QoS guarantee extended to the application is the probability that an arbitrary data unit will be successfully transmitted through the network to/from the application.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Data Protection Regulation proposed by the European Commission contains important elements to facilitate and secure personal data flows within the Single Market. A harmonised level of protection of individual data is an important objective and all stakeholders have generally welcomed this basic principle. However, when putting the regulation proposal in the complex context in which it is to be implemented, some important issues are revealed. The proposal dictates how data is to be used, regardless of the operational context. It is generally thought to have been influenced by concerns over social networking. This approach implies protection of data rather than protection of privacy and can hardly lead to more flexible instruments for global data flows.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The speed with which data has moved from being scarce, expensive and valuable, thus justifying detailed and careful verification and analysis to a situation where the streams of detailed data are almost too large to handle has caused a series of shifts to occur. Legal systems already have severe problems keeping up with, or even in touch with, the rate at which unexpected outcomes flow from information technology. The capacity to harness massive quantities of existing data has driven Big Data applications until recently. Now the data flows in real time are rising swiftly, become more invasive and offer monitoring potential that is eagerly sought by commerce and government alike. The ambiguities as to who own this often quite remarkably intrusive personal data need to be resolved – and rapidly - but are likely to encounter rising resistance from industrial and commercial bodies who see this data flow as ‘theirs’. There have been many changes in ICT that has led to stresses in the resolution of the conflicts between IP exploiters and their customers, but this one is of a different scale due to the wide potential for individual customisation of pricing, identification and the rising commercial value of integrated streams of diverse personal data. A new reconciliation between the parties involved is needed. New business models, and a shift in the current confusions over who owns what data into alignments that are in better accord with the community expectations. After all they are the customers, and the emergence of information monopolies needs to be balanced by appropriate consumer/subject rights. This will be a difficult discussion, but one that is needed to realise the great benefits to all that are clearly available if these issues can be positively resolved. The customers need to make these data flow contestable in some form. These Big data flows are only going to grow and become ever more instructive. A better balance is necessary, For the first time these changes are directly affecting governance of democracies, as the very effective micro targeting tools deployed in recent elections have shown. Yet the data gathered is not available to the subjects. This is not a survivable social model. The Private Data Commons needs our help. Businesses and governments exploit big data without regard for issues of legality, data quality, disparate data meanings, and process quality. This often results in poor decisions, with individuals bearing the greatest risk. The threats harbored by big data extend far beyond the individual, however, and call for new legal structures, business processes, and concepts such as a Private Data Commons. This Web extra is the audio part of a video in which author Marcus Wigan expands on his article "Big Data's Big Unintended Consequences" and discusses how businesses and governments exploit big data without regard for issues of legality, data quality, disparate data meanings, and process quality. This often results in poor decisions, with individuals bearing the greatest risk. The threats harbored by big data extend far beyond the individual, however, and call for new legal structures, business processes, and concepts such as a Private Data Commons.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tutkielman tarkoituksena on selvittää lukijalle, mistä syistä ja miten Euroopan unionin tietosuojainstrumentit – nykyinen tietosuojadirektiivi ja tuleva tietosuoja-asetus – asettavat rajoituksia EU:n kansalaisten henkilötietojen siirroille kolmansiin maihin kaupallisia tarkoituksia varten. Erityisen tarkastelun kohteena on henkilötietojen siirrot EU:n alueelta Yhdysvaltoihin mahdollistanut Safe Harbor-järjestelmä, jonka Euroopan unionin tuomioistuin katsoi pätemättömäksi asiassa C-362/14 Maximillian Schrems v Data Protection Commissioner. Tutkimusaiheen eli henkilötietojen rajat ylittävien siirtojen ollessa kansainvälisen oikeuden ja tietosuojaoikeuden leikkauspisteessä on tutkimuksessa käytetty molempien oikeudenalojen asiantuntijoiden tutkimuksia lähteenä. Kansainvälisen oikeuden peruslähteenä on käytetty Brownlien teosta Principles of Public International Law (6. painos), jota vasten on peilattu tutkimusaihetta tarkemmin käsittelevää kirjallisuutta. Erityisesti on syytä nostaa esille Bygraven tietosuojaoikeutta kansainvälisessä kontekstissa käsittelevä Data Privacy Law: An International Perspective sekä Kunerin nimenomaisesti henkilötietojen kansainvälisiä siirtoja käsittelevä Transborder Data Flows and Data Privacy Law. Uusien teknologioiden myötä nopeasti kehittyvästä tutkimusilmiöstä ja oikeudenalasta johtuen tutkimuksessa on käytetty lähdemateriaaleina runsaasti aihepiiriä käsitteleviä artikkeleita arvostetuista julkaisuista, sekä EU:n tietosuojaviranomaisten ja YK:n raportteja virallislähteinä. Keskeiset tutkimustulokset osoittavat EU:n ja sen jäsenvaltioiden intressit henkilötietojen siirroissa sekä EU:n asettamien henkilötietojen siirtosääntelyiden vaikutukset kolmansiin maihin. Globaalin konsensuksen saavuttamisen koskien henkilötietojen kansainvälisiä siirtosääntelyitä arvioitiin olevan ainakin lähitulevaisuudessa epätodennäköistä. Nykyisten alueellisten sääntelyratkaisujen osalta todettiin Euroopan neuvoston yleissopimuksen No. 108 eniten osoittavan potentiaalia maailmanlaajuiselle implementoinnille. Lopuksi arvioitiin oikeudellisen pluralismin mallin puitteissa tarkoituksenmukaisia keinoja EU:n kansalaisten perusoikeuksina turvattujen yksityisyyden ja henkilötietojen suojan parantamiseksi. Tarkastelu osoittaa EU:n kansalaisten sekä näiden henkilötietoja käsittelevien ja siirtävien yritysten välillä olleen tiedollinen ja voimallinen epätasapaino, joka ilmenee yksilön tiedollisen itseautonomian ja suostumuksen merkityksen heikentymisenä, joskin EU:n vuonna 2018 voimaan astuva tietosuoja-asetus organisaatioiden vastuuta korostamalla pyrkii poistamaan tätä ongelmaa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the emergence of multi-cores into the mainstream, there is a growing need for systems to allow programmers and automated systems to reason about data dependencies and inherent parallelismin imperative object-oriented languages. In this paper we exploit the structure of object-oriented programs to abstract computational side-effects. We capture and validate these effects using a static type system. We use these as the basis of sufficient conditions for several different data and task parallelism patterns. We compliment our static type system with a lightweight runtime system to allow for parallelization in the presence of complex data flows. We have a functioning compiler and worked examples to demonstrate the practicality of our solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Physical infrastructure assets are important components of our society and our economy. They are usually designed to last for many years, are expected to be heavily used during their lifetime, carry considerable load, and are exposed to the natural environment. They are also normally major structures, and therefore present a heavy investment, requiring constant management over their life cycle to ensure that they perform as required by their owners and users. Given a complex and varied infrastructure life cycle, constraints on available resources, and continuing requirements for effectiveness and efficiency, good management of infrastructure is important. While there is often no one best management approach, the choice of options is improved by better identification and analysis of the issues, by the ability to prioritise objectives, and by a scientific approach to the analysis process. The abilities to better understand the effect of inputs in the infrastructure life cycle on results, to minimise uncertainty, and to better evaluate the effect of decisions in a complex environment, are important in allocating scarce resources and making sound decisions. Through the development of an infrastructure management modelling and analysis methodology, this thesis provides a process that assists the infrastructure manager in the analysis, prioritisation and decision making process. This is achieved through the use of practical, relatively simple tools, integrated in a modular flexible framework that aims to provide an understanding of the interactions and issues in the infrastructure management process. The methodology uses a combination of flowcharting and analysis techniques. It first charts the infrastructure management process and its underlying infrastructure life cycle through the time interaction diagram, a graphical flowcharting methodology that is an extension of methodologies for modelling data flows in information systems. This process divides the infrastructure management process over time into self contained modules that are based on a particular set of activities, the information flows between which are defined by the interfaces and relationships between them. The modular approach also permits more detailed analysis, or aggregation, as the case may be. It also forms the basis of ext~nding the infrastructure modelling and analysis process to infrastructure networks, through using individual infrastructure assets and their related projects as the basis of the network analysis process. It is recognised that the infrastructure manager is required to meet, and balance, a number of different objectives, and therefore a number of high level outcome goals for the infrastructure management process have been developed, based on common purpose or measurement scales. These goals form the basis of classifYing the larger set of multiple objectives for analysis purposes. A two stage approach that rationalises then weights objectives, using a paired comparison process, ensures that the objectives required to be met are both kept to the minimum number required and are fairly weighted. Qualitative variables are incorporated into the weighting and scoring process, utility functions being proposed where there is risk, or a trade-off situation applies. Variability is considered important in the infrastructure life cycle, the approach used being based on analytical principles but incorporating randomness in variables where required. The modular design of the process permits alternative processes to be used within particular modules, if this is considered a more appropriate way of analysis, provided boundary conditions and requirements for linkages to other modules, are met. Development and use of the methodology has highlighted a number of infrastructure life cycle issues, including data and information aspects, and consequences of change over the life cycle, as well as variability and the other matters discussed above. It has also highlighted the requirement to use judgment where required, and for organisations that own and manage infrastructure to retain intellectual knowledge regarding that infrastructure. It is considered that the methodology discussed in this thesis, which to the author's knowledge has not been developed elsewhere, may be used for the analysis of alternatives, planning, prioritisation of a number of projects, and identification of the principal issues in the infrastructure life cycle.