993 resultados para Dalton Population Principle
Resumo:
En la primera parte del presente trabajo se investigan diferentes formas de cálculo de la razón de concentración conocida como Coeficiente o Índice de Gini, y el no cumplimiento del axioma conocido como de "invariancia a la replicación" o "Principio de Población de Dalton" en algunas de ellas. El alcance de las conclusiones se limita al comportamiento de las fórmulas sometidas a prueba (se encuentran entre las más conocidas) cuando son aplicadas a distribuciones de datos desagregados. En la segunda parte se propone un factor de corrección para las fórmulas de cálculo analizadas, de manera que satisfagan el Principio de Población.
Resumo:
En la primera parte del presente trabajo se investigan diferentes formas de cálculo de la razón de concentración conocida como Coeficiente o Índice de Gini, y el no cumplimiento del axioma conocido como de "invariancia a la replicación" o "Principio de Población de Dalton" en algunas de ellas. El alcance de las conclusiones se limita al comportamiento de las fórmulas sometidas a prueba (se encuentran entre las más conocidas) cuando son aplicadas a distribuciones de datos desagregados. En la segunda parte se propone un factor de corrección para las fórmulas de cálculo analizadas, de manera que satisfagan el Principio de Población.
Resumo:
En la primera parte del presente trabajo se investigan diferentes formas de cálculo de la razón de concentración conocida como Coeficiente o Índice de Gini, y el no cumplimiento del axioma conocido como de "invariancia a la replicación" o "Principio de Población de Dalton" en algunas de ellas. El alcance de las conclusiones se limita al comportamiento de las fórmulas sometidas a prueba (se encuentran entre las más conocidas) cuando son aplicadas a distribuciones de datos desagregados. En la segunda parte se propone un factor de corrección para las fórmulas de cálculo analizadas, de manera que satisfagan el Principio de Población.
Resumo:
En la primera parte del presente trabajo se investigan diferentes formas de cálculo de la razón de concentración conocida como Coeficiente o Índice de Gini, y el no cumplimiento del axioma conocido como de "invariancia a la replicación" o "Principio de Población de Dalton" en algunas de ellas. El alcance de las conclusiones se limita al comportamiento de las fórmulas sometidas a prueba (se encuentran entre las más conocidas) cuando son aplicadas a distribuciones de datos desagregados. En la segunda parte se propone un factor de corrección para las fórmulas de cálculo analizadas, de manera que satisfagan el Principio de Población.
Resumo:
Includes reproductions of original title-pages.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Historical information can be used, in addition to pedigree, traits and genotypes, to map quantitative trait locus (QTL) in general populations via maximum likelihood estimation of variance components. This analysis is known as linkage disequilibrium (LD) and linkage mapping, because it exploits both linkage in families and LD at the population level. The search for QTL in the wild population of Soay sheep on St. Kilda is a proof of principle. We analysed the data from a previous study and confirmed some of the QTLs reported. The most striking result was the confirmation of a QTL affecting birth weight that had been reported using association tests but not when using linkage-based analyses. Copyright © Cambridge University Press 2010.
Resumo:
Insect vector-borne diseases, such as malaria and dengue fever (both spread by mosquito vectors), continue to significantly impact health worldwide, despite the efforts put forth to eradicate them. Suppression strategies utilizing genetically modified disease-refractory insects have surfaced as an attractive means of disease control, and progress has been made on engineering disease-resistant insect vectors. However, laboratory-engineered disease refractory genes would probably not spread in the wild, and would most likely need to be linked to a gene drive system in order to proliferate in native insect populations. Underdominant systems like translocations and engineered underdominance have been proposed as potential mechanisms for spreading disease refractory genes. Not only do these threshold-dependent systems have certain advantages over other potential gene drive mechanisms, such as localization of gene drive and removability, extreme engineered underdominance can also be used to bring about reproductive isolation, which may be of interest in controlling the spread of GMO crops. Proof-of-principle establishment of such drive mechanisms in a well-understood and studied insect, such as Drosophila melanogaster, is essential before more applied systems can be developed for the less characterized vector species of interest, such as mosquitoes. This work details the development of several distinct types of engineered underdominance and of translocations in Drosophila, including ones capable of bringing about reproductive isolation and population replacement, as a proof of concept study that can inform efforts to construct such systems in insect disease vectors.
Resumo:
Priors are existing information or beliefs that are needed in Bayesian analysis. Informative priors are important in obtaining the Bayesian posterior distributions for estimated parameters in stock assessment. In the case of the steepness parameter (h), the need for an informative prior is particularly important because it determines the stock-recruitment relationships in the model. However, specifications of the priors for the h parameter are often subjective. We used a simple population model to derive h priors based on life history considerations. The model was based on the evolutionary principle that persistence of any species, given its life history (i.e., natural mortality rate) and its exposure to recruitment variability, requires a minimum recruitment compensation that enables the species to rebound consistently from low critical abundances (Nc). Using the model, we derived the prior probability distributions of the h parameter for fish species that have a range of natural mortality, recruitment variabilities, and Nt values.
Resumo:
Critical-level generalized-utilitarian population principles with positive critical levels pro-vide an ethically attractive way of avoiding the repugnant conclusion. We discuss the axiomatic foundations of critical-level generalized utilitarianism and investigate its rela-tionship to the sadistic and strong sadistic conclusions. A positive critical level avoids the repugnant conclusion. We demonstrate that, although no critical-level generalized-utilitarian principle can avoid both the repugnant and strong sadistic conclusions, princi-ples that avoid both have significant defects.
Resumo:
Full Text / Article complet
Resumo:
Brain activity can be measured with several non-invasive neuroimaging modalities, but each modality has inherent limitations with respect to resolution, contrast and interpretability. It is hoped that multimodal integration will address these limitations by using the complementary features of already available data. However, purely statistical integration can prove problematic owing to the disparate signal sources. As an alternative, we propose here an advanced neural population model implemented on an anatomically sound cortical mesh with freely adjustable connectivity, which features proper signal expression through a realistic head model for the electroencephalogram (EEG), as well as a haemodynamic model for functional magnetic resonance imaging based on blood oxygen level dependent contrast (fMRI BOLD). It hence allows simultaneous and realistic predictions of EEG and fMRI BOLD from the same underlying model of neural activity. As proof of principle, we investigate here the influence on simulated brain activity of strengthening visual connectivity. In the future we plan to fit multimodal data with this neural population model. This promises novel, model-based insights into the brain's activity in sleep, rest and task conditions.