1000 resultados para DYNAMICS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells exhibit a diverse repertoire of dynamic behaviors. These dynamic functions are implemented by circuits of interacting biomolecules. Although these regulatory networks function deterministically by executing specific programs in response to extracellular signals, molecular interactions are inherently governed by stochastic fluctuations. This molecular noise can manifest as cell-to-cell phenotypic heterogeneity in a well-mixed environment. Single-cell variability may seem like a design flaw but the coexistence of diverse phenotypes in an isogenic population of cells can also serve a biological function by increasing the probability of survival of individual cells upon an abrupt change in environmental conditions. Decades of extensive molecular and biochemical characterization have revealed the connectivity and mechanisms that constitute regulatory networks. We are now confronted with the challenge of integrating this information to link the structure of these circuits to systems-level properties such as cellular decision making. To investigate cellular decision-making, we used the well studied galactose gene-regulatory network in \textit{Saccharomyces cerevisiae}. We analyzed the mechanism and dynamics of the coexistence of two stable on and off states for pathway activity. We demonstrate that this bimodality in the pathway activity originates from two positive feedback loops that trigger bistability in the network. By measuring the dynamics of single-cells in a mixed sugar environment, we observe that the bimodality in gene expression is a transient phenomenon. Our experiments indicate that early pathway activation in a cohort of cells prior to galactose metabolism can accelerate galactose consumption and provide a transient increase in growth rate. Together these results provide important insights into strategies implemented by cells that may have been evolutionary advantageous in competitive environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flies are particularly adept at balancing the competing demands of delay tolerance, performance, and robustness during flight, which invites thoughtful examination of their multimodal feedback architecture. This dissertation examines stabilization requirements for inner-loop feedback strategies in the flapping flight of Drosophila, the fruit fly, against the backdrop of sensorimotor transformations present in the animal. Flies have evolved multiple specializations to reduce sensorimotor latency, but sensory delay during flight is still significant on the timescale of body dynamics. I explored the effect of sensor delay on flight stability and performance for yaw turns using a dynamically-scaled robot equipped with a real-time feedback system that performed active turns in response to measured yaw torque. The results show a fundamental tradeoff between sensor delay and permissible feedback gain, and suggest that fast mechanosensory feedback provides a source of active damping that compliments that contributed by passive effects. Presented in the context of these findings, a control architecture whereby a haltere-mediated inner-loop proportional controller provides damping for slower visually-mediated feedback is consistent with tethered-flight measurements, free-flight observations, and engineering design principles. Additionally, I investigated how flies adjust stroke features to regulate and stabilize level forward flight. The results suggest that few changes to hovering kinematics are actually required to meet steady-state lift and thrust requirements at different flight speeds, and the primary driver of equilibrium velocity is the aerodynamic pitch moment. This finding is consistent with prior hypotheses and observations regarding the relationship between body pitch and flight speed in fruit flies. The results also show that the dynamics may be stabilized with additional pitch damping, but the magnitude of required damping increases with flight speed. I posit that differences in stroke deviation between the upstroke and downstroke might play a critical role in this stabilization. Fast mechanosensory feedback of the pitch rate could enable active damping, which would inherently exhibit gain scheduling with flight speed if pitch torque is regulated by adjusting stroke deviation. Such a control scheme would provide an elegant solution for flight stabilization across a wide range of flight speeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation presents the results of studies of several rotationally- resolved resonance enhanced multiphoton ionization (REMPI) processes in some simple molecular systems. The objective of these studies is to quantitatively identify the underlying dynamics of this highly state-specific process which utilizes the narrow bandwidth radiation of a laser to ionize a molecule by first preparing an excited state via multiphoton absorption and subsequently ionizing that state before it can decay. Coupled with high-resolution photoelectron spectroscopy, REMPI is clearly an important probe of molecular excited states and their photoioniza tion dynamics.

A key feature of our studies is that they are carried out using accurate Hartree-Fock orbitals to describe the photoelectron orbitals of the molecular ions. The use of such photoelectron orbitals is important in rotationally-resolved studies where the angular momentum coupling in the photoelectron orbital plays a significant role in the photoionization dynamics. In these studies the Hartree-Fock molecular molecular photoelectron orbitals are obtained by numerical solution of a Lippmann-Schwinger integral equation.

Studies reported here include investigations of (i) ionic rotational branching ratios and their energy dependence for REMPI via the A^2Σ^+(3sσ) and D^2Σ^+(3pσ)states of NO, (ii) the influence of angular momentum constraints on branching ratios at low photoelectron energies for REMPI via low-J levels of the resonant intermediate state, (iii) the strong dependence of photoelectron angular distributions on final ionic rotational state and on the alignment in REMPI of the A^2Σ^+ state of NO, (iv) vibrational state dependence of ionic rotational branching ratios arising from rapid orbital evolution in resonant states (E'^2Σ^+(3pσ) of CH), (v) the influence of rovibronic interactions on the rotational branching ratios seen in REMPI via the D^2Σ^+(3pσ) state of NO, and (vi) effects of laser intensity on the photoionization dynamics of REMPI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a necessary condition for the validity of the present value model, the price-dividend ratio must be stationary. However, significant market episodes seem to provide evidence of prices significantly drifting apart from dividends while other episodes show prices anchoring back to dividends. This paper investigates the stationarity of this ratio in the context of a Markov- switching model à la Hamilton (1989) where an asymmetric speed of adjustment towards a unique attractor is introduced. A three-regime model displays the best regime identification and reveals that the first part of the 90’s boom (1985-1995) and the post-war period are characterized by a stationary state featuring a slow reverting process to a relatively high attractor. Interestingly, the latter part of the 90’s boom (1996-2000), characterized by a growing price-dividend ratio, is entirely attributed to a stationary regime featuring a highly reverting process to the attractor. Finally, the post-Lehman Brothers episode of the subprime crisis can be classified into a temporary nonstationary regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damage morphologies, threshold fluences in ZnO films were studied with femtosecond laser pulses. Time-resolved reflectivity and transmissivity have been measured by the pump-probe technique at different pump fluences and wavelengths. The results indicate that two-phase transition is the dominant damage mechanism, which is similar to that in narrow band gap semiconductors. The estimated energy loss rate of conduction electrons is 1.5 eV/ps. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the single-shot damage thresholds of MgF2/ZnS onmidirectional reflector for laser pulse durations from 50 A to 900 fs. A coupled dynamic model is applied to study the damage mechanisms, in which we consider not only the electronic excitation of the material, but also the influence of this excitation-induced changes in the complex refractive index of material on the laser pulse itself. The results indicate that this feedback effect plays a very important role during the damage of material. Based on this model, we calculate the threshold fluences and the time-resolved excitation process of the multiplayer. The theoretical calculations agree well with our experimental results. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical and experimental investigations of charge-carrier dynamics at semiconductor/liquid interfaces, specifically with respect to interfacial electron transfer and surface recombination, are presented.

Fermi's golden rule has been used to formulate rate expressions for charge transfer of delocalized carriers in a nondegenerately doped semiconducting electrode to localized, outer-sphere redox acceptors in an electrolyte phase. The treatment allows comparison between charge-transfer kinetic data at metallic, semimetallic, and semiconducting electrodes in terms of parameters such as the electronic coupling to the electrode, the attenuation of coupling with distance into the electrolyte, and the reorganization energy of the charge-transfer event. Within this framework, rate constant values expected at representative semiconducting electrodes have been determined from experimental data for charge transfer at metallic electrodes. The maximum rate constant (i.e., at optimal exoergicity) for outer-sphere processes at semiconducting electrodes is computed to be in the range 10-17-10-16 cm4 s-1, which is in excellent agreement with prior theoretical models and experimental results for charge-transfer kinetics at semiconductor/liquid interfaces.

Double-layer corrections have been evaluated for semiconductor electrodes in both depletion and accumulation conditions. In conjuction with the Gouy-Chapman-Stern model, a finite difference approach has been used to calculate potential drops at a representative solid/liquid interface. Under all conditions that were simulated, the correction to the driving force used to evaluate the interfacial rate constant was determined to be less than 2% of the uncorrected interfacial rate constant.

Photoconductivity decay lifetimes have been obtained for Si(111) in contact with solutions of CH3OH or tetrahydrofuran containing one-electron oxidants. Silicon surfaces in contact with electrolyte solutions having Nernstian redox potentials > 0 V vs. SCE exhibited low effective surface recombination velocities regardless of the different surface chemistries. The formation of an inversion layer, and not a reduced density of electrical trap sites on the surface, is shown to be responsible for the long charge-carrier lifetimes observed for these systems. In addition, a method for preparing an air-stable, low surface recombination velocity Si surface through a two-step, chlorination/alkylation reaction is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To attempt to control the quantum state of a physical system with a femtosecond two-colour laser field, a model for the two-level system is analysed as a first step. We investigate the coherent control of the two-colour laser pulses propagating in a two-level medium. Based on calculating the influence of the laser field with various laser parameters on the electron dynamics, it is found the electronic state can be changed up and down by choosing the appropriate laser pulses and the coherent control of the two-colour laser pulses can substantially modify the behaviour of the electronic dynamics: a quicker change of two states can be produced even for small pulse duration. Moreover, the oscillatory structures around the resonant frequency and the propagation features of the laser pulses depend sensitively on the relative phase of the two-colour laser pulses. Finally, the influence of a finite lifetime of the upper level is discussed in brief.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous studies have shown that flexible materials improve resilience and durability of a structure. Several studies have investigated the behavior of elastic plates under the influence of a free stream, such as studies of the fluttering flag and others of shape reconfiguration, due to a free stream.

The principle engineering contribution of this thesis is the design and development of a vertical axis wind turbine that features pliable blades which undergo various modes of behavior, ultimately leading to rotational propulsion of the turbine. The wind turbine design was tested in a wind tunnel and at the Caltech Laboratory for Optimized Wind Energy. Ultimately, the flexible blade vertical axis wind turbine proved to be an effective way of harnessing the power of the wind.

In addition, this body of work builds on the current knowledge of elastic cantilever plates in a free stream flow by investigating the inverted flag. While previous studies have focused on the fluid structure interaction of a free stream on elastic cantilever plates, none had studied the plate configuration where the trailing edge was clamped, leaving the leading edge free to move. Furthermore, the studies presented in this thesis establish the geometric boundaries of where the large-amplitude flapping occurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate simulation of quantum dynamics in complex systems poses a fundamental theoretical challenge with immediate application to problems in biological catalysis, charge transfer, and solar energy conversion. The varied length- and timescales that characterize these kinds of processes necessitate development of novel simulation methodology that can both accurately evolve the coupled quantum and classical degrees of freedom and also be easily applicable to large, complex systems. In the following dissertation, the problems of quantum dynamics in complex systems are explored through direct simulation using path-integral methods as well as application of state-of-the-art analytical rate theories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a theoretical work on the space-time dynamic behavior of a nuclear reactor without feedback. Diffusion theory with G-energy groups is used.

In the first part the accuracy of the point kinetics (lumped-parameter description) model is examined. The fundamental approximation of this model is the splitting of the neutron density into a product of a known function of space and an unknown function of time; then the properties of the system can be averaged in space through the use of appropriate weighting functions; as a result a set of ordinary differential equations is obtained for the description of time behavior. It is clear that changes of the shape of the neutron-density distribution due to space-dependent perturbations are neglected. This results to an error in the eigenvalues and it is to this error that bounds are derived. This is done by using the method of weighted residuals to reduce the original eigenvalue problem to that of a real asymmetric matrix. Then Gershgorin-type theorems .are used to find discs in the complex plane in which the eigenvalues are contained. The radii of the discs depend on the perturbation in a simple manner.

In the second part the effect of delayed neutrons on the eigenvalues of the group-diffusion operator is examined. The delayed neutrons cause a shifting of the prompt-neutron eigenvalue s and the appearance of the delayed eigenvalues. Using a simple perturbation method this shifting is calculated and the delayed eigenvalues are predicted with good accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of this thesis, experiments utilizing an NMR phase interferometric concept are presented. The spinor character of two-level systems is explicitly demonstrated by using this concept. Following this is the presentation of an experiment which uses this same idea to measure relaxation times of off-diagonal density matrix elements corresponding to magnetic-dipole-forbidden transitions in a ^(13)C-^1H, AX spin system. The theoretical background for these experiments and the spin dynamics of the interferometry are discussed also.

The second part of this thesis deals with NMR dipolar modulated chemical shift spectroscopy, with which internuclear bond lengths and bond angles with respect to the chemical shift principal axis frame are determined from polycrystalline samples. Experiments using benzene and calcium formate verify the validity of the technique in heteronuclear (^(13)C-^1H) systems. Similar experiments on powdered trichloroacetic acid confirm the validity in homonuclear (^1H- ^1H) systems. The theory and spin dynamics are explored in detail, and the effects of a number of multiple pulse sequences are discussed.

The last part deals with an experiment measuring the ^(13)C chemical shift tensor in K_2Pt(CN)_4Br_(0.3) • 3H_2O, a one-dimensional conductor. The ^(13)C spectra are strongly affected by ^(14)N quadrupolar interactions via the ^(13)C - ^(14)N dipolar interaction. Single crystal rotation spectra are shown.

An appendix discussing the design, construction, and performance of a single-coil double resonance NMR sample probe is included.

Relevância:

20.00% 20.00%

Publicador: