959 resultados para DYNAMIC ASSESSMENT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work reports the experimental evaluation of physical and gas permeation parameters of four spinel-based investments developed with or without inclusion of sacrificial fillers. Data were compared with those of three commercial formulations. Airflow tests were conducted from 27 to 546°C, and permeability coefficients were fitted from Forchheimer's equation. Skeletal densities found for spinel- (ρs = 3635 ± 165 kg/m3) and phosphate-bonded (ρs = 2686 ± 11 kg/m3) samples were in agreement with the literature. The developed investments were more porous and less permeable than commercial brands, and the differences were ascribed to the different pore morphologies and hydraulic pore sizes of ceramic matrices. The inclusion of both fibers and microbeads resulted in increases of total porosity (42.6–56.6%) and of Darcian permeability coefficient k1 (0.76 × 10−14–7.03 × 10−14 m2). Air permeation was hindered by increasing flow temperatures, and the effect was related to the influence of gas viscosity on ΔP, in accordance with Darcy's law. Casting quality with molten titanium (CP Ti) was directly proportional to the permeability level of the spinel-based investments. However, the high reactivity of the silica-based investment RP and the formation of α-case during casting hindered the benefits of the highest permeability level of this commercial brand.
Resumo:
The present study aimed to investigate how induced lingual fatigue affected lingual strength, articulatory kinematics, and perceptual speech features in CS, a 51-year-old female with active myasthenia gravis (MG), and three age and gender matched control participants, Lingual fatigue was elicited via a series of endurance tasks using a tongue pressure bulb. Following each endurance task, the participants performed a speech task containing the phonemes /k/, /t/, and /j/ that was recorded with an electromagnetic articulograph, followed by a lingual strength assessment using a tongue pressure bulb. Participants repeated this schedule over five phases and kinematic and strength changes during each phase were compared to baseline measurements. All of CSs significant kinematic changes occurred during the final fatigue phase compared to 27.3% of the control group's kinematic changes occurring during this phase, suggesting the kinematic changes associated with fatigue were not accelerated in CS. The endurance tasks also elicited different kinematic effects for CSs anterior and posterior tongue segments. While CS exhibited mostly similar kinematic and perceptual changes to the control group, some of CS's perceptual transcriptions for /k/ and kinematic changes were not replicated, indicating that some different perceptual and physiological consequences to CS's speech were elicited by the endurance tasks.
Resumo:
Background and Aim: The Dynamic Occupational Therapy Cognitive Assessment for Children (DOTCA-Ch), recently developed in Israel, assesses the cognitive areas: orientation, spatial perception, praxis, visuomotor construction and thinking operations of 6- to 12-year-old children. The dynamic aspect, which incorporates mediation and prompting, has been presented as a valuable clinical feature of this new assessment. This study investigated the cultural suitability, dynamic nature and comprehensiveness of the DOTCA-Ch as a single cognitive assessment for occupational therapy practice in Australia. Methods: Twenty-three paediatric occupational therapists participated in three tutorial and video demonstrations, which were then followed by a group interview. Results and Conclusion: Thematic analysis of transcripts identified four main themes: appropriateness of assessment tasks, language, mediation and clinical utility. Within each theme, the participants raised both positive and negative features. This paper highlights occupational therapists' mixed views on the clinical utility of this assessment in Australia. Limitations of this study and areas for further research are suggested
Resumo:
Despite great advances in very large scale integrated-circuit design and manufacturing, performance of even the best available high-speed, high-resolution analog-to-digital converter (ADC) is known to deteriorate while acquiring fast-rising, high-frequency, and nonrepetitive waveforms. Waveform digitizers (ADCs) used in high-voltage impulse recordings and measurements are invariably subjected to such waveforms. Errors resulting from a lowered ADC performance can be unacceptably high, especially when higher accuracies have to be achieved (e.g., when part of a reference measuring system). Static and dynamic nonlinearities (estimated independently) are vital indices for evaluating performance and suitability of ADCs to be used in such environments. Typically, the estimation of static nonlinearity involves 10-12 h of time or more (for a 12-b ADC) and the acquisition of millions of samples at high input frequencies for dynamic characterization. ADCs with even higher resolution and faster sampling speeds will soon become available. So, there is a need to reduce testing time for evaluating these parameters. This paper proposes a novel and time-efficient method for the simultaneous estimation of static and dynamic nonlinearity from a single test. This is achieved by conceiving a test signal, comprised of a high-frequency sinusoid (which addresses dynamic assessment) modulated by a low-frequency ramp (relevant to the static part). Details of implementation and results on two digitizers are presented and compared with nonlinearities determined by the existing standardized approaches. Good agreement in results and time savings achievable indicates its suitability.
Resumo:
Despite great advances in very large scale integrated-circuit design and manufacturing, performance of even the best available high-speed, high-resolution analog-to-digital converter (ADC) is known to deteriorate while acquiring fast-rising, high-frequency, and nonrepetitive waveforms. Waveform digitizers (ADCs) used in high-voltage impulse recordings and measurements are invariably subjected to such waveforms. Errors resulting from a lowered ADC performance can be unacceptably high, especially when higher accuracies have to be achieved (e.g., when part of a reference measuring system). Static and dynamic nonlinearities (estimated independently) are vital indices for evaluating performance and suitability of ADCs to be used in such environments. Typically, the estimation of static nonlinearity involves 10-12 h of time or more (for a 12-b ADC) and the acquisition of millions of samples at high input frequencies for dynamic characterization. ADCs with even higher resolution and faster sampling speeds will soon become available. So, there is a need to reduce testing time for evaluating these parameters. This paper proposes a novel and time-efficient method for the simultaneous estimation of static and dynamic nonlinearity from a single test. This is achieved by conceiving a test signal, comprised of a high-frequency sinusoid (which addresses dynamic assessment) modulated by a low-frequency ramp (relevant to the static part). Details of implementation and results on two digitizers are presented and compared with nonlinearities determined by the existing standardized approaches. Good agreement in results and time savings achievable indicates its suitability.
Resumo:
Among the factors that affect the convergence towards the European Higher Education Area, university teaching staff's motivation is fundamental, and consequently, it is crucial to empirically know what this motivation depends on. In this context, one of the most relevant changes in the teacher-student relationship is assessment. In fact, the transition from a static assessment -focused on only one temporal point (final exam)- to a dynamic assessment, will require changes in thought and action, both on the part of teachers and students. In this line, the objective of this paper is to analyze the determinants of teaching staff's predisposition to the continuous assessment method. Specifically, we consider the following explanatory dimensions: teaching method used (which measures their degree of involvement with the ongoing adaptation process), type of subject (core, compulsory and optional), and teacher's personal characteristics (professional status and gender). The empirical application carried out at the University of Alicante uses Logit Models with Random Coefficients to capture heterogeneity, and shows that "cooperative learning" is a clear-cut determinant of "continuous assessment" as well as "continuous assessment plus final examination". Also, a conspicuous result, which in turn becomes a thought-provoking finding, is that professional status is highly relevant as a teacher's engagement is closely related to prospects of stability. Consequently, the most relevant implications from the results revolve around the way academic institutions can propose and implement inducement for their teaching staff.
Resumo:
Among the factors that affect the convergence towards the European Higher Education Area, university teaching staff's motivation is fundamental, and consequently, it is crucial to empirically know what this motivation depends on. In this context, one of the most relevant changes in the teacher-student relationship is assessment. In fact, the transition from a static assessment -focused on only one temporal point (final exam)- to a dynamic assessment, will require changes in thought and action, both on the part of teachers and students. In this line, the objective of this paper is to analyze the determinants of teaching staff's predisposition to the continuous assessment method. Specifically, we consider the following explanatory dimensions: teaching method used (which measures their degree of involvement with the ongoing adaptation process), type of subject (core, compulsory and optional), and teacher's personal characteristics (professional status and gender). The empirical application carried out at the University of Alicante uses Logit Models with Random Coefficients to capture heterogeneity, and shows that "cooperative learning" is a clear-cut determinant of "continuous assessment" as well as "continuous assessment plus final examination". Also, a conspicuous result, which in turn becomes a thought-provoking finding, is that professional status is highly relevant as a teacher's engagement is closely related to prospects of stability. Consequently, the most relevant implications from the results revolve around the way academic institutions can propose and implement inducement for their teaching staff.
Resumo:
O objetivo do presente trabalho foi avaliar comparativamente parâmetros biomecânicos (tanto antropométricos, quanto cinemáticos) de dados obtidos a partir do console Microsoft Kinect (2010). A avaliação destes parâmetros foi realizada para validar seu uso para obter informações complementares à Análise Ergonomica do Trabalho (AET) e em outras pesquisas, cujos objetivos envolvem o diagnóstico de uso de produtos ou ambientes de trabalho a partir da análises posturais e interações da população que o utiliza. A pesquisa com este console em particular é justificada uma vez que seu lançamento modificou o cenário da biomecânica, já que se trata de um equipamento acessível e portátil. Porém, sua precisão em relação à outros equipamentos ainda está em aberto, sendo inclusive, objeto de estudo de muitas pesquisas em andamento. Os dados obtidos por meio de sistemas de captura de movimentos tridimensionais permitem a avaliação de produtos, atividades e análises de interações homem-objeto. No campo do Design, é uma importante realização, uma vez que permite que profissionais tenham acesso à ferramenta que, anteriormente, era limitada à nichos especializados. O console foi comparado com o sistema de captura de movimentos inercial MVN Biomech (XSENS TECHNOLOGIES) e com o tradicional registro por meio de vídeo. Para obter dados do console Kinect, um software disponível no mercado foi selecionado a partir de critérios predefinidos para obter dados cinemáticos do console. Dois experimentos laboratoriais foram realizados: o primeiro, teve como objetivo obter dados operacionais dos equipamentos e suas limitações de uso; e o segundo foi realizado de forma a obter dados biomecânicos e compará-los a partir de três parâmetros estáticos e um dinâmico. Os parâmetros estáticos envolveram ângulos articulares e segmentares em posturas selecionadas e dimensões segmentares, onde a proposta foi avaliar dados antropométricos e as características do modelo biomecânico referente à manter os corpos rígidos durante a movimentação. O parâmetro dinâmico foi realizado de forma a obter dados de deslocamento global das articulações em movimentações selecionadas. Para possibilitar esta análise, uma plataforma digital foi desenvolvida, constituindo um campo neutro para o tratamento dos dados. A plataforma mantém os dados originais dos sistemas, permitindo a distinção entre os modelos biomecânicos e a retirada de dados que possam ser comparados. Os experimentos realizados permitiram avaliar a usabilidade do console, fornecendo diretrizes para seu uso. Para avaliar a utilização do console em ambientes reais de trabalho, foram realizados registros preliminares em laboratórios químicos, os quais se mostraram viáveis se as limitações, semelhantes às de sistemas baseados em tecnologia ótica, sejam consideradas. Futuras análises devem ser conduzidas para validar estatisticamente os resultados obtidos. Porém, considerando o objetivo do trabalho, pode-se concluir que o sistema avaliado é uma alternativa confiável no contexto proposto.
Resumo:
植被恢复重建是遏制水土流失的有效措施之一,研究植被恢复重建过程、评价植物群落健康状况对加速植被建设具有重要的实践意义。本文根据黄土丘陵沟壑区的特点,建立了植物群落健康评价指标体系,对草地植被恢复重建过程中的不同阶段的植物群落的健康状况进行了评价。结果表明:植被群落活力变化过程呈抛物线型;群落组织力基本呈波动性变化;恢复力的变化则与活力变化过程相反,在群落活力达到最高水平时,群落的恢复力降至最低;土壤健康呈波动性上升的变化趋势。综合评价表明,植物群落健康水平随着演替过程的发展呈波动性且逐渐上升的变化过程。
Resumo:
Safety is an element of extreme priority in mining operations, currently many traditional mining countries are investing in the implementation of wireless sensors capable of detecting risk factors; through early warning signs to prevent accidents and significant economic losses. The objective of this research is to contribute to the implementation of sensors for continuous monitoring inside underground mines providing technical parameters for the design of sensor networks applied in underground coal mines. The application of sensors capable of measuring in real time variables of interest, promises to be of great impact on safety for mining industry. The relationship between the geological conditions and mining method design, establish how to implement a system of continuous monitoring. In this paper, the main causes of accidents for underground coal mines are established based on existing worldwide reports. Variables (temperature, gas, structural faults, fires) that can be related to the most frequent causes of disaster and its relevant measuring range are then presented, also the advantages, management and mining operations are discussed, including the analyzed of applying these systems in terms of Benefit, Opportunity, Cost and Risk. The publication focuses on coal mining, based on the proportion of these events a year worldwide, where a significant number of workers are seriously injured or killed. Finally, a dynamic assessment of safety at underground mines it is proposed, this approach offers a contribution to design personalized monitoring networks, the experience developed in coal mines provides a tool that facilitates the application development of technology within underground coal mines.
Resumo:
The objective of the present study is to propose a method to dynamically evaluate discomfort of a passenger seat by measuring the interface pressure between the occupant and the seat during the performance of the most common activities of a typical flight(1). This article reports the results of resting and reading studies performed in a simulator that represents the interior of a commercial aircraft.