928 resultados para DRUG-RESISTANT
Resumo:
We show that imatinib, nilotinib, and dasatinib possess weak off-target activity against RAF and, therefore, drive paradoxical activation of BRAF and CRAF in a RAS-dependent manner. Critically, because RAS is activated by BCR-ABL, in drug-resistant chronic myeloid leukemia (CML) cells, RAS activity persists in the presence of these drugs, driving paradoxical activation of BRAF, CRAF, MEK, and ERK, and leading to an unexpected dependency on the pathway. Consequently, nilotinib synergizes with MEK inhibitors to kill drug-resistant CML cells and block tumor growth in mice. Thus, we show that imatinib, nilotinib, and dasatinib drive paradoxical RAF/MEK/ERK pathway activation and have uncovered a synthetic lethal interaction that can be used to kill drug-resistant CML cells in vitro and in vivo.
Resumo:
Multidrug resistance (MDR) occurs in prostate cancer, and this happens when the cancer cells resist chemotherapeutic drugs by pumping them out of the cells. MDR inhibitors such as cyclosporin A (CsA) can stop the pumping and enhance the drugs accumulated in the cells. The cellular drug accumulation is monitored using a microfluidic chip mounted on a single cell bioanalyzer. This equipment has been developed to measure accumulation of drugs such as doxorubicin (DOX) and fluorescently labeled paclitaxel (PTX) in single prostate cancer cells. The inhibition of drug efflux on the same prostate cell was examined in drug-sensitive and drug-resistant cells. Accumulation of these drug molecules was not found in the MDR cells, PC-3 RX-DT2R cells. Enhanced drug accumulation was observed only after treating the MDR cell in the presence of 5 μM of CsA as the MDR inhibitor. We envision this monitoring of the accumulation of fluorescent molecules (drug or fluorescent molecules), if conducted on single patient cancer cells, can provide information for clinical monitoring of patients undergoing chemotherapy in the future.
Resumo:
The phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR pathway is one of the most frequently activated signaling pathways in prostate cancer cells, and loss of the tumor suppressor PTEN and amplification of PIK3CA are the two most commonly detected mechanisms for the activation of these pathways. Aberrant activation of PI3K/Akt/mTOR has been implicated not only in the survival and metastasis of prostate cancer cells but also in the development of drug resistance. As such, selective inactivation of this pathway may provide opportunities to attack prostate cancer from all fronts. However, while preclinical studies examining specific inhibitors of PI3K or mTOR have yielded promising results, the evidence from clinical trials is less convincing. Emerging evidence from the analyses of some solid tumors suggests that a class of dual PI3K/mTOR inhibitors, which bind to and inactivate both PI3K and mTOR, may achieve better anti-cancer outcomes. In this review, we will summarize the mechanisms of action of these inhibitors, their effectiveness when used alone or in combination with other chemotherapeutic compounds, and their potential to serve as the next generation therapies for prostate cancer patients, particularly those who are resistant to the frontline chemotherapeutic drugs.
Resumo:
Resistance to therapy limits the effectiveness of drug treatment in many diseases. Drug resistance can be considered as a successful outcome of the bacterial struggle to survive in the hostile environment of a drug-exposed cell. An important mechanism by which bacteria acquire drug resistance is through mutations in the drug target. Drug resistant strains (multi-drug resistant and extensively drug resistant) of Mycobacterium tuberculosis are being identified at alarming rates, increasing the global burden of tuberculosis. An understanding of the nature of mutations in different drug targets and how they achieve resistance is therefore important. An objective of this study is to first decipher sequence as well as structural bases for the observed resistance in known drug resistant mutants and then to predict positions in each target that are more prone to acquiring drug resistant mutations. A curated database containing hundreds of mutations in the 38 drug targets of nine major clinical drugs, associated with resistance is studied here. Mutations have been classified into those that occur in the binding site itself, those that occur in residues interacting with the binding site and those that occur in outer zones. Structural models of the wild type and mutant forms of the target proteins have been analysed to seek explanations for reduction in drug binding. Stability analysis of an entire array of 19 mutations at each of the residues for each target has been computed using structural models. Conservation indices of individual residues, binding sites and whole proteins are computed based on sequence conservation analysis of the target proteins. The analyses lead to insights about which positions in the polypeptide chain have a higher propensity to acquire drug resistant mutations. Thus critical insights can be obtained about the effect of mutations on drug binding, in terms of which amino acid positions and therefore which interactions should not be heavily relied upon, which in turn can be translated into guidelines for modifying the existing drugs as well as for designing new drugs. The methodology can serve as a general framework to study drug resistant mutants in other micro-organisms as well.
Resumo:
Multidrug resistance is a major therapeutic challenge faced in the conventional chemotherapy. Nanocarriers are beneficial in the transport of chemotherapeutics by their ability to bypass the P-gp efflux in cancers. Most of the P-gp inhibitors under phase II clinical trial are facing failures and hence there is a need to develop a suitable carrier to address P-gp efflux in cancer therapy. Herein, we prepared novel protamine and carboxymethyl cellulose polyelectrolyte multi-layered nanocapsules modified with Fe3O4 nanoparticles for the delivery of doxorubicin against highly drug resistant HeLa cells. The experimental results revealed that improved cellular uptake, enhanced drug intensity profile with greater percentage of apoptotic cells was attained when doxorubicin loaded magnetic nanocapsules were used in the presence of external magnetic field. Hence, we conclude that this magnetic field assisted nanocapsule system can be used for delivery of chemotherapeutics for potential therapeutic efficacy at minimal dose in multidrug resistant cancers. From the Clinical Editor: Many cancer drugs fail when cancer cells become drug resistant. Indeed, multidrug resistance (MDR) is a major therapeutic challenge. One way that tumor cells attain MDR is by over expression of molecular pumps comprising of P-glycoprotein (P-gp) and multidrug resistant proteins (MRP), which can expel chemotherapeutic drugs out of the cells. In this study, the authors prepared novel protamine and carboxymethyl cellulose polyelectrolyte multi-layered nanocapsules modified with Fe3O4 nanoparticles for the delivery of doxorubicin. The results show that there was better drug delivery and efficacy even against MDR tumor cells. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Distribution of luminous bacteria (LB) in penaeid shrimp grow-out pond water in semiintensive seawater farming system and their resistance to 15 antibacterials were investigated. Total viable counts and luminous bacterial counts in pond water ranged from 2.00xl03 to 1.35xl04/ml and l.OOxl01 to 8.00Xl02/ml, respectively. The percentage composition of LB in the total viable population increased significantly with period of culture. Five species of LB such as Vibrio fischeri, V. harveyi, V. orientalis, V. splendidus 1 and Photobacterium leiognathi were encountered. V. harveyi was the dominant species, constituting >80% of the total LB. Multiple antibiotic resistance was more common in these LB. Pond water isolates showed resistance to at least four antibacterial agents.
Resumo:
The recent re-emergence of tuberculosis, especially the multidrug-resistant cases, has highlighted the importance of screening effective novel drugs against Mycobacterium tuberculosis. In this study, the in vitro activities of small peptides isolated from snake venom were investigated against multidrug-resistant M. tuberculosis. Minimum inhibitory concentrations (MICs) were determined by the Bactec TB-460 radiometric method. A small peptide with the amino acid sequence ECYRKSDIVTCEPWQKFCYREVTFFPNHPVYLSGCASECTETNSKWCCTTDKCNRARGG (designated as vgf-1) from Naja atra (isolated from Yunnan province of China) venom had in vitro activity against clinically isolated multidrug-resistant strains of M. tuberculosis. The MIC was 8.5 mg/l. The antimycobacterial domain of this 60aa peptide is under investigation. (C) 2003 Elsevier Science B.V. and the International Society of Chemotherapy. All rights reserved.
Resumo:
PURPOSE: The development of multi-drug resistance (MDR) due to the expression of members of the ATP binding cassette (ABC) transporter family is a major obstacle in cancer treatment. The broad range of substrate specificities associated with these transporters leads to the efflux of many anti-cancer drugs from tumour cells. Therefore, the development of new chemotherapeutic agents that are not substrates of these transporters is important. We have recently demonstrated that some members of a novel series of pyrrolo-1,5-benzoxazepine (PBOX) compounds are microtubule-depolymerising agents that potently induce apoptosis in several cancer cell lines and impair growth of mouse breast tumours. The aim of this current study was to establish whether PBOXs were capable of inducing apoptosis in cancer cells expressing either P-glycoprotein or breast cancer resistance protein (BCRP), two of the main ABC transporters associated with MDR.
METHODS: We performed in vitro studies to assess the effects of PBOXs on cell proliferation, cell cycle and apoptosis in human cancer cell lines and their drug-resistant substrains expressing either P-glycoprotein or BCRP. In addition, we performed a preliminary molecular docking study to examine interactions between PBOXs and P-glycoprotein.
RESULTS: We established that three representative PBOXs, PBOX-6, -15 and -16 were capable of inducing apoptosis in drug-resistant HL60-MDR1 cells (expressing P-glycoprotein) and HL60-ABCG2 cells (expressing BCRP) with similar potencies as in parental human promyelocytic leukaemia HL60 cells. Likewise, resistance to PBOX-6 and -16 was not evident in P-glycoprotein-expressing A2780-ADR cells in comparison with parent human ovarian carcinoma A2780 cells. Finally, we deduced by molecular docking that PBOX-6 is not likely to form favourable interactions with the substrate binding site of P-glycoprotein.
CONCLUSION: Our results suggest that pro-apoptotic PBOX compounds may be potential candidates for the treatment of P-glycoprotein- or BCRP-associated MDR cancers.
Resumo:
Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections
Resumo:
We report a case of HIV-1 superinfection (HSI) with a clade B, triple-class resistant virus in a patient successfully controlling viremia with continuous combination antiretroviral therapy started 8 years earlier during primary HIV infection. The course of HIV infection prior to HSI was monitored in both the source partner and recipient (8 and 11 years, respectively) and 4 years following HSI. This case report demonstrates re-infection with HIV-1 despite effective combination antiretroviral therapy.
Resumo:
The objective of the study was to evaluate the survival response of multi-drug resistant enteropathogenic Escherichia coli and Salmonella paratyphi to the salinity fluctuations induced by a saltwater barrier constructed in Vembanadu lake, which separates the lake into a freshwater dominated southern and brackish water dominated northern part. Therefore, microcosms containing freshwater, brackish water and microcosms with different saline concentrations (5, 10, 15, 20, 25 ppt) inoculated with E. coli/S. paratyphi were monitored up to 34 days at 20 and 30 WC. E. coli and S. paratyphi exhibited significantly higher (p <0.05) survival at 20 WC compared to 30 WC in all microcosms. Despite fresh/brackish water, E. coli and S. paratyphi showed prolonged survival up to 34 days at both temperatures. They also demonstrated better survival potential at all tested saline concentrations except 25 ppt where a significantly higher (p<0.0001) decay was observed. Therefore, enhanced survival exhibited by the multi-drug resistant enteropathogenic E. coli and S. paratyphi over a wide range of salinity levels suggest that they are able to remain viable for a very long time at higher densities in all seasons of the year in Vembanadu lake irrespective of saline concentrations, and may pose potential public health risks during recreational activities