925 resultados para DOSE IMATINIB
Resumo:
Aim: To compare a less intensive regimen based on high-dose imatinib (IM) to an intensive IM/HyperCVAD regimen in adults with Ph+ ALL, in terms of early response and outcome after stem cell transplantation (SCT). Methods: Patients aged 18-60 years with previously untreated Ph+ ALL not evolving from chronic myeloid leukemia were eligible if no contra-indication to chemotherapy and SCT (ClinicalTrials.gov ID, NCT00327678). After a steroid prephase allowing Ph and/or BCR-ABL diagnosis, cycle 1 differed between randomization arms. In arm A (IM-based), IM was given at 800 mg on day 1-28, combined with vincristine (2 mg, day 1, 8, 15, 22) and dexamethasone (40 mg, day 1-2, 8-9, 15-16, and 22-23) only. In arm B (IM/HyperCVAD), IM was given at 800 mg on day 1-14, combined with adriamycin (50 mg/m2, day 4), cyclophosphamide (300 mg/m2/12h, day 1, 2, 3), vincristine (2 mg, day 4 and 11), and dexamethasone (40 mg, day 1-4 and 11-14). All patients received a cycle 2 combining high-dose methotrexate (1 g/m2, day 1) and AraC (3 g/m2/12h, day 2 and 3) with IM at 800 mg on day 1-14, whatever their response. Four intrathecal infusions were given during this induction/consolidation period. Minimal residual disease (MRD) was centrally evaluated by quantitative RQ-PCR after cycle 1 (MRD1) and cycle 2 (MRD2). Major MRD response was defined as BCR-ABL/ABL ratio <0.1%. Then, all patients were to receive allogeneic SCT using related or unrelated matched donor stem cells or autologous SCT if no donor and a major MRD2 response. IM/chemotherapy maintenance was planned after autologous SCT. In the absence of SCT, patients received alternating cycles 1 (as in arm B) and cycles 2 followed by maintenance, like in the published IM/HyperCVAD regimen. The primary objective was non-inferiority of arm A in term of major MRD2 response. Secondary objectives were CR rate, SCT rate, treatment- and transplant-related mortality, relapse-free (RFS), event-free (EFS) and overall (OS) survival. Results: Among the 270 patients randomized between May 2006 and August 2011, 265 patients were evaluable for this analysis (133 arm A, 132 arm B; median age, 47 years; median follow-up, 40 months). Main patient characteristics were well-balanced between both arms. Due to higher induction mortality in arm B (9 versus 1 deaths; P=0.01), CR rate was higher in the less intensive arm A (98% versus 89% after cycle 1 and 98% versus 91% after cycle 2; P= 0.003 and 0.006, respectively). A total of 213 and 205 patients were evaluated for bone marrow MRD1 and MRD2. The rates of patients reaching major MRD response and undetectable MRD were 45% (44% arm A, 46% arm B; P=0.79) and 10% (in both arms) at MRD1 and 66% (68% arm A, 63.5% arm B; P=0.56) and 25% (28% arm A, 22% arm B; P=0.33) at MRD2, respectively. The non-inferiority primary endpoint was thus demonstrated (P= 0.002). Overall, EFS was estimated at 42% (95% CI, 35-49) and OS at 51% (95% CI, 44-57) at 3 years, with no difference between arm A and B (46% versus 38% and 53% versus 49%; P=0.25 and 0.61, respectively). Of the 251 CR patients, 157 (80 arm A, 77 arm B) and 34 (17 in both arms) received allogeneic and autologous SCT in first CR, respectively. Allogeneic transplant-related mortality was similar in both arms (31.5% versus 22% at 3 years; P=0.51). Of the 157 allografted patients, 133 had MRD2 evaluation and 89 had MRD2 <0.1%. In these patients, MRD2 did not significantly influence post-transplant RFS and OS, either when tested with the 0.1% cutoff or as a continuous log covariate. Of the 34 autografted patients, 31 had MRD2 evaluation and, according to the protocol, 28 had MRD2 <0.1%. When restricting the comparison to patients achieving major MRD2 response and with the current follow-up, a trend for better results was observed after autologous as compared to allogeneic SCT (RFS, 63% versus 49.5% and OS, 69% versus 58% at 3 years; P=0.35 and P=0.08, respectively). Conclusions: In adults, the use of TK inhibitors (TKI) has markedly improved the results of Ph+ ALL therapy, now close to those observed in Ph-negative ALL. We demonstrated here that chemotherapy intensity may be safely reduced when associated with high-dose IM. We will further explore this TKI-based strategy using nilotinib prior to SCT in our next GRAAPH-2013 trial. The trend towards a better outcome after autologous compared to allogeneic SCT observed in MRD responders validates MRD as an important early surrogate endpoint for treatment stratification and new drug investigation in this disease.
Resumo:
PURPOSE Deep molecular response (MR(4.5)) defines a subgroup of patients with chronic myeloid leukemia (CML) who may stay in unmaintained remission after treatment discontinuation. It is unclear how many patients achieve MR(4.5) under different treatment modalities and whether MR(4.5) predicts survival. PATIENTS AND METHODS Patients from the randomized CML-Study IV were analyzed for confirmed MR(4.5) which was defined as ≥ 4.5 log reduction of BCR-ABL on the international scale (IS) and determined by reverse transcriptase polymerase chain reaction in two consecutive analyses. Landmark analyses were performed to assess the impact of MR(4.5) on survival. RESULTS Of 1,551 randomly assigned patients, 1,524 were assessable. After a median observation time of 67.5 months, 5-year overall survival (OS) was 90%, 5-year progression-free-survival was 87.5%, and 8-year OS was 86%. The cumulative incidence of MR(4.5) after 9 years was 70% (median, 4.9 years); confirmed MR(4.5) was 54%. MR(4.5) was reached more quickly with optimized high-dose imatinib than with imatinib 400 mg/day (P = .016). Independent of treatment approach, confirmed MR(4.5) at 4 years predicted significantly higher survival probabilities than 0.1% to 1% IS, which corresponds to complete cytogenetic remission (8-year OS, 92% v 83%; P = .047). High-dose imatinib and early major molecular remission predicted MR(4.5). No patient with confirmed MR(4.5) has experienced progression. CONCLUSION MR(4.5) is a new molecular predictor of long-term outcome, is reached by a majority of patients treated with imatinib, and is achieved more quickly with optimized high-dose imatinib, which may provide an improved therapeutic basis for treatment discontinuation in CML.
Resumo:
Introduction: As imatinib pharmacokinetics are highly variable, plasma levels differ largely between patients under the same dosage. Retrospective studies in chronic myeloid leukemia (CML) patients showed significant correlations between low levels and suboptimal response, as well as between high levels and poor tolerability. Monitoring of trough plasma levels, targeting 1000 μg/L and above, is thus increasingly advised. Our study was launched to assess prospectively the clinical usefulness of systematic imatinib TDM in CML patients. This preliminary analysis addresses the appropriateness of the dosage adjustment approach applied in this study, which targets the recommended trough level and allows an interval of 4-24 h after last drug intake for blood sampling. Methods: Blood samples from the first 15 patients undergoing 1st TDM were obtained 1.5-25 h after last dose. Imatinib plasma levels were measured by LC-MS/MS and the concentrations were extrapolated to trough based on a Bayesian approach using a population pharmacokinetic model. Trough levels were predicted to differ significantly from the target in 12 patients (10 <750 μg/L; 2 >1500 μg/L along with poor tolerance) and individual dose adjustments were proposed. 8 patients underwent a 2nd TDM cycle. Trough levels of 1st and 2nd TDM were compared, the sample drawn 1.5 h after last dose (during distribution phase) was excluded from the analysis. Results: Individual dose adjustments were applied in 6 patients. Observed concentrations extrapolated to trough ranged from 360 to 1832 μg/L (median 725; mean 810, CV 52%) on 1st TDM and from 720 to 1187 μg/L (median 950; mean 940, CV 18%) on 2nd TDM cycle. Conclusions: These preliminary results suggest that TDM of imatinib using a Bayesian interpretation is able to target the recommended trough level of 1000 μg/L and to reduce the considerable differences in trough level exposure between patients (with CV decreasing from 52% to 18%). While this may simplify blood collection in daily practice, as samples do not have to be drawn exactly at trough, the largest possible interval to last drug intake yet remains preferable to avoid sampling during distribution phase leading to biased extrapolation. This encourages the evaluation of the clinical benefit of a routine TDM intervention in CML patients, which the randomized Swiss I-COME trial aims to.
Resumo:
Despite the beneficial effects of imatinib mesylate, some patients may either not respond or respond suboptimally. Here, we report two chronic myelogenous leukemia patients; one had a suboptimal response according to European LeukemiaNet criteria (a major molecular response was not achieved after 18 months of standard-dose imatinib therapy) and the other had failure with a standard dose of imatinib. At the time of the suboptimal response in patient 1 and the failure in patient 2, we were able to detect the F359I mutation in the BCR-ABL tyrosine kinase domain using DNA sequencing in both patients. Therefore, it was decided to change the therapeutic regimen to dasatinib at a dose of 100 mg once daily in both patients. This change resulted in the achievement of complete cytogenetic remission in patient 1 after 4 months and a major molecular response within 2 and 3 months in both patients. Detection of the F359I mutation in our two cases likely explains the suboptimal response to imatinib in case 1 and the failure in case 2. This implies that in such cases dasatinib should be considered to effectively suppress the mutated clones. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Although gastrointestinal stromal tumor (GIST) is effectively treated with imatinib, there are a number of clinical challenges in the optimal treatment of these patients. The plasma steady-state trough level of imatinib has been proposed to correlate with clinical outcome. Plasma imatinib level may be affected by a number of patient characteristics. Additionally, the ideal plasma trough concentration of imatinib is likely to vary based on the KIT genotype (genotype determines imatinib binding affinity) of the individual patient. Patients’ genotype or plasma imatinib level may influence the type and duration of response that is appreciable by clinical evaluation. The objectives of this study were to determine effects of genotype on the type of response appreciable by current imaging criteria, to determine the distribution of plasma imatinib levels in patients with GIST, to determine factors that correlate with plasma imatinib level, to determine the incremental effects of imatinib dose escalation; and to explore the median plasma levels and outcomes of patients with various KIT mutations. We therefore obtained KIT mutation information and analyzed CT response for size and density measurement of GISTs at baseline and within the first four moths of imatinib treatment. In 126 patients with metastatic/unresectable disease, the KIT genotype of patients’ tumor was significantly associated with unique response characteristics measurable by CT. Furthermore, hepatic and peritoneal metastases differed in their response characteristics. A subgroup of patients with KIT exon 9 mutation, who received higher doses of imatinib and experienced higher trough imatinib levels, experienced improved progression-free survival similar to that of KIT exon 11 patients. Therefore, we have found that imatinib plasma levels were higher in patients with elevated Aspartate amino transferase, were women, were older, or were being treated concomitantly with CYP450 substrate drugs. As expected, CYP450 inducers correlated with a lower plasma imatinib levels in GIST patients. Renal metabolism of imatinib accounts for <10%, so it was not included in the analysis but may affect covariates. Interestingly, there was a trend for low imatinib levels and inferior progression-free survival in patients who had undergone complete gastrectomy. Patients with KIT exon 9 mutation in our cohort received higher imatinib doses, experienced higher trough imatinib levels, and experienced a PFS similar to that of KIT exon 11 patients. In conclusion, imatinib plasma levels are influenced by a number of patient characteristics. The optimal imatinib plasma level for individual patients is not known but is an area of intense investigation. Our study confirms patients with KIT exon 9 mutations benefit from high-dose imatinib and higher trough imatinib levels.
Resumo:
The impact of imatinib dose on response rates and survival in older patients with chronic myeloid leukemia in chronic phase has not been studied well. We analyzed data from the German CML-Study IV, a randomized five-arm treatment optimization study in newly diagnosed BCR-ABL-positive chronic myeloid leukemia in chronic phase. Patients randomized to imatinib 400 mg/day (IM400) or imatinib 800 mg/day (IM800) and stratified according to age (≥65 years vs. <65 years) were compared regarding dose, response, adverse events, rates of progression, and survival. The full 800 mg dose was given after a 6-week run-in period with imatinib 400 mg/day. The dose could then be reduced according to tolerability. A total of 828 patients were randomized to IM400 or IM800. Seven hundred eighty-four patients were evaluable (IM400, 382; IM800, 402). One hundred ten patients (29 %) on IM400 and 83 (21 %) on IM800 were ≥65 years. The median dose per day was lower for patients ≥65 years on IM800, with the highest median dose in the first year (466 mg/day for patients ≥65 years vs. 630 mg/day for patients <65 years). Older patients on IM800 achieved major molecular remission and deep molecular remission as fast as younger patients, in contrast to standard dose imatinib with which older patients achieved remissions much later than younger patients. Grades 3 and 4 adverse events were similar in both age groups. Five-year relative survival for older patients was comparable to that of younger patients. We suggest that the optimal dose for older patients is higher than 400 mg/day. ClinicalTrials.gov identifier: NCT00055874
Resumo:
This review describes the current multidisciplinary management of gastrointestinal stromal tumor (GIST), which is the most common sarcoma of the gastrointestinal tract. Before 2001, surgery was the only effective therapy for GIST. The discovery of the central role of KIT proto-oncogene mutations in the pathogenesis of this tumor, and the development of specific inhibitors of KIT tyrosine kinase (TK) function, has changed the paradigm of treatment for GISTs. Imatinib and sunitinib are TK inhibitors with activity against GISTs. Their major established role in GIST is in the treatment of advanced disease. A growing body of literature and clinical experience support the potential perioperative use of these drugs. The adjuvant use of imatinib is based on retrospective series and limited prospective studies demonstrating that imatinib reduces the risk of recurrence. Ongoing studies are further defining the length of adjuvant therapy, as well as identifying the patients that could achieve the best results. Neoadjuvant treatment often decreases the tumor size, allowing a less morbid surgery, appears to be safe and beneficial for some patients, and therefore deserves further study.
Resumo:
BACKGROUND: Treatment recommendations have been developed for management of patients with chronic myeloid leukemia (CML). METHODS: A 30-item multiple-choice questionnaire was administered to 435 hematologists and oncohematologists in 16 Latin American countries. Physicians self-reported their diagnostic, therapeutic, and disease management strategies. RESULTS: Imatinib is available as initial therapy to 92% of physicians, and 42% of physicians have access to both second-generation tyrosine kinase inhibitors. Standard-dose imatinib is the preferred initial therapy for most patients, but 20% would manage a young patient initially with an allogeneic stem cell transplant from a sibling donor, and 10% would only offer hydroxyurea to an elderly patient. Seventy-two percent of responders perform routine cytogenetic analysis for monitoring patients on therapy, and 59% routinely use quantitative polymerase chain reaction. For patients who fail imatinib therapy, 61% would increase the dose of imatinib before considering change to a second-generation tyrosine kinase inhibitor, except for patients aged 60 years, for whom a switch to a second-generation tyrosine kinase inhibitor was the preferred choice. CONCLUSIONS: The answers to this survey provide insight into the management of patients with CML in Latin America. Some deviations from current recommendations were identified. Understanding the treatment patterns of patients with CML in broad population studies is important to identify needs and improve patient care. Cancer 2010;116:4991-5000. (C) 2070 American Cancer Society.
Resumo:
BACKGROUND: The Fip1-like-1-platelet-derived growth factor receptor alpha (FIP1L1-PDGFRA) gene fusion is a common cause of chronic eosinophilic leukemia (CEL)/hypereosinophilic syndrome (HES), and patients suffering from this particular subgroup of CEL/HES respond to low-dose imatinib therapy. However, some patients may develop imatinib resistance because of an acquired T674I mutation, which is believed to prevent drug binding through steric hindrance. METHODS: In an imatinib resistant FIP1L1-PDGFRA positive patient, we analyzed the molecular structure of the fusion gene and analyzed the effect of several kinase inhibitors on FIP1L1-PDGFRA-mediated proliferative responses in vitro. RESULTS: Sequencing of the FIP1L1-PDGFRA fusion gene revealed the occurrence of a S601P mutation, which is located within the nucleotide binding loop. In agreement with the clinical observations, imatinib did not inhibit the proliferation of S601P mutant FIP1L1-PDGFRA-transduced Ba/F3 cells. Moreover, sorafenib, which has been described to inhibit T674I mutant FIP1L1-PDGFRA, failed to block S601P mutant FIP1L1-PDGFRA. Structural modeling revealed that the newly identified S601P mutated form of PDGFRA destabilizes the inactive conformation of the kinase domain that is necessary to bind imatinib as well as sorafenib. CONCLUSIONS: We identified a novel mutation in FIP1L1-PDGFRA resulting in both imatinib and sorafenib resistance. The identification of novel drug-resistant FIP1L1-PDGFRA variants may help to develop the next generation of target-directed compounds for CEL/HES and other leukemias.
Resumo:
This observational study analyzed imatinib pharmacokinetics and response in 2478 chronic myeloid leukemia (CML) patients. Data were obtained through centralized therapeutic drug monitoring (TDM) at median treatment duration of ≥2 years. First, individual initial trough concentrations under 400mg/day imatinib starting dose were estimated. Second, their correlation (C^min(400mg)) with reported treatment response was verified. Low imatinib levels were predicted in young male patients and those receiving P-gp/CYP3A4 inducers. These patients had also lower response rates (7% lower 18-months MMR in male, 17% lower 1-year CCyR in young patients, Kaplan-Meier estimates). Time-point independent multivariate regression confirmed a correlation of individual C^min(400mg) with response and adverse events. Possibly due to confounding factors (e.g. dose modifications, patient selection bias), the relationship seemed however flatter than previously reported from prospective controlled studies. Nonetheless, these observational results strongly suggest that a subgroup of patients could benefit from early dosage optimization assisted by TDM, because of lower imatinib concentrations and lower response rates.
Resumo:
A recent randomized EORTC phase III trial, comparing two doses of imatinib in patients with advanced gastrointestinal stromal tumours (GISTs), reported dose dependency for progression-free survival. The current analysis of that study aimed to assess if tumour mutational status correlates with clinical response to imatinib. Pre-treatment samples of GISTs from 377 patients enrolled in phase III study were analyzed for mutations of KIT or PDGFRA by combination of D-HPLC and direct sequencing of tumour genomic DNA. Mutation types were correlated with patients' survival data. The presence of exon 9-activating mutations in KIT was the strongest adverse prognostic factor for response to imatinib, increasing the relative risk of progression by 171% (P<0.0001) and the relative risk of death by 190% (P<0.0001) when compared with KIT exon 11 mutants. Similarly, the relative risk of progression was increased by 108% (P<0.0001) and the relative risk of death by 76% (P=0.028) in patients without detectable KIT or PDGFRA mutations. In patients whose tumours expressed an exon 9 KIT oncoprotein, treatment with the high-dose regimen resulted in a significantly superior progression-free survival (P=0.0013), with a reduction of the relative risk of 61%. We conclude that tumour genotype is of major prognostic significance for progression-free survival and overall survival in patients treated with imatinib for advanced GISTs. Our findings suggest the need for differential treatment of patients with GISTs, with KIT exon 9 mutant patients benefiting the most from the 800 mg daily dose of the drug.
Resumo:
Background: Imatinib mesylate (IM) is a selective tyrosine kinase inhibitor used for treating chronic myeloid leukemia (CML). IM has high efficacy, however some individuals develop a resistance due to impaired bio-availability. Polymorphisms in genes encoding membrane transporters such as ABCB1 have been associated with differences in protein expression and function that influence the response to several drugs. Aim: To investigate the relationship of ABCB1 polymorphisms with markers of response to IM in patients with CML Methods: One hundred eighteen CML patients initially treated with a standard dose of IM (400 mg/day) for 18 months were selected at two health centers in Sao Paulo City, Brazil. The response criteria were based on the European LeukemiaNet recommendations. ABCB1 polymorphisms c.1236C>T (rs1128503), c.3435C>T (rs1045642) and c.2677G>T/A (rs2032582) were evaluated by PCR-RFLP. Results: ABCB1 polymorphisms were not related with a risk for CML in this sample population (p<0.05). In the CML group, frequencies of ABCB1 SNPs were similar between responder and non-responder patients (p>0.05). In the responder group, the frequency of ABCB11236CT/2677GT/3435CT haplotype was higher in patients with major molecular response (MMR) (51.7%) than in patients without MMR (8.3%, p = 0.010). Furthermore, carriers of this haplotype had increased the probability of reaching the MMR compared with the non-carriers (OR: 11.8; 95% CI: 1.43-97.3, p = 0.022). Conclusions: The ABCB1 1236CT/2677GT/3435CT haplotype is positively associated with the major molecular response to IM in CML patients. (C) 2011 Elsevier Inc. All rights reserved.