994 resultados para DOSE DELIVERY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis work aims to find a procedure for isolating specific features of the current signal from a plasma focus for medical applications. The structure of the current signal inside a plasma focus is exclusive of this class of machines and a specific analysis procedure has to be developed. The hope is to find one or more features that shows a correlation with the dose erogated. The study of the correlation between the current discharge signal and the dose delivered by a plasma focus could be of some importance not only for the practical application of dose prediction but also for expanding the knowledge anbout the plasma focus physics. Vatious classes of time-frequency analysis tecniques are implemented in order to solve the problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effectiveness of the Anisotropic Analytical Algorithm (AAA) implemented in the Eclipse treatment planning system (TPS) was evaluated using theRadiologicalPhysicsCenteranthropomorphic lung phantom using both flattened and flattening-filter-free high energy beams. Radiation treatment plans were developed following the Radiation Therapy Oncology Group and theRadiologicalPhysicsCenterguidelines for lung treatment using Stereotactic Radiation Body Therapy. The tumor was covered such that at least 95% of Planning Target Volume (PTV) received 100% of the prescribed dose while ensuring that normal tissue constraints were followed as well. Calculated doses were exported from the Eclipse TPS and compared with the experimental data as measured using thermoluminescence detectors (TLD) and radiochromic films that were placed inside the phantom. The results demonstrate that the AAA superposition-convolution algorithm is able to calculate SBRT treatment plans with all clinically used photon beams in the range from 6 MV to 18 MV. The measured dose distribution showed a good agreement with the calculated distribution using clinically acceptable criteria of ±5% dose or 3mm distance to agreement. These results show that in a heterogeneous environment a 3D pencil beam superposition-convolution algorithms with Monte Carlo pre-calculated scatter kernels, such as AAA, are able to reliably calculate dose, accounting for increased lateral scattering due to the loss of electronic equilibrium in low density medium. The data for high energy plans (15 MV and 18 MV) showed very good tumor coverage in contrast to findings by other investigators for less sophisticated dose calculation algorithms, which demonstrated less than expected tumor doses and generally worse tumor coverage for high energy plans compared to 6MV plans. This demonstrates that the modern superposition-convolution AAA algorithm is a significant improvement over previous algorithms and is able to calculate doses accurately for SBRT treatment plans in the highly heterogeneous environment of the thorax for both lower (≤12 MV) and higher (greater than 12 MV) beam energies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

RESUMO: O cancro de mama e o mais frequente diagnoticado a indiv duos do sexo feminino. O conhecimento cientifico e a tecnologia tem permitido a cria ção de muitas e diferentes estrat egias para tratar esta patologia. A Radioterapia (RT) est a entre as diretrizes atuais para a maioria dos tratamentos de cancro de mama. No entanto, a radia ção e como uma arma de dois canos: apesar de tratar, pode ser indutora de neoplasias secund arias. A mama contralateral (CLB) e um orgão susceptivel de absorver doses com o tratamento da outra mama, potenciando o risco de desenvolver um tumor secund ario. Nos departamentos de radioterapia tem sido implementadas novas tecnicas relacionadas com a radia ção, com complexas estrat egias de administra ção da dose e resultados promissores. No entanto, algumas questões precisam de ser devidamente colocadas, tais como: E seguro avançar para tecnicas complexas para obter melhores indices de conformidade nos volumes alvo, em radioterapia de mama? O que acontece aos volumes alvo e aos tecidos saudaveis adjacentes? Quão exata e a administração de dose? Quais são as limitações e vantagens das técnicas e algoritmos atualmente usados? A resposta a estas questões e conseguida recorrendo a m etodos de Monte Carlo para modelar com precisão os diferentes componentes do equipamento produtor de radia ção(alvos, ltros, colimadores, etc), a m de obter uma descri cão apropriada dos campos de radia cão usados, bem como uma representa ção geometrica detalhada e a composição dos materiais que constituem os orgãos e os tecidos envolvidos. Este trabalho visa investigar o impacto de tratar cancro de mama esquerda usando diferentes tecnicas de radioterapia f-IMRT (intensidade modulada por planeamento direto), IMRT por planeamento inverso (IMRT2, usando 2 feixes; IMRT5, com 5 feixes) e DCART (arco conformacional dinamico) e os seus impactos em irradia ção da mama e na irradia ção indesejada dos tecidos saud aveis adjacentes. Dois algoritmos do sistema de planeamento iPlan da BrainLAB foram usados: Pencil Beam Convolution (PBC) e Monte Carlo comercial iMC. Foi ainda usado um modelo de Monte Carlo criado para o acelerador usado (Trilogy da VARIAN Medical Systems), no c odigo EGSnrc MC, para determinar as doses depositadas na mama contralateral. Para atingir este objetivo foi necess ario modelar o novo colimador multi-laminas High- De nition que nunca antes havia sido simulado. O modelo desenvolvido est a agora disponí vel no pacote do c odigo EGSnrc MC do National Research Council Canada (NRC). O acelerador simulado foi validado com medidas realizadas em agua e posteriormente com c alculos realizados no sistema de planeamento (TPS).As distribui ções de dose no volume alvo (PTV) e a dose nos orgãos de risco (OAR) foram comparadas atrav es da an alise de histogramas de dose-volume; an alise estati stica complementar foi realizadas usando o software IBM SPSS v20. Para o algoritmo PBC, todas as tecnicas proporcionaram uma cobertura adequada do PTV. No entanto, foram encontradas diferen cas estatisticamente significativas entre as t ecnicas, no PTV, nos OAR e ainda no padrão da distribui ção de dose pelos tecidos sãos. IMRT5 e DCART contribuem para maior dispersão de doses baixas pelos tecidos normais, mama direita, pulmão direito, cora cão e at e pelo pulmão esquerdo, quando comparados com as tecnicas tangenciais (f-IMRT e IMRT2). No entanto, os planos de IMRT5 melhoram a distribuição de dose no PTV apresentando melhor conformidade e homogeneidade no volume alvo e percentagens de dose mais baixas nos orgãos do mesmo lado. A t ecnica de DCART não apresenta vantagens comparativamente com as restantes t ecnicas investigadas. Foram tamb em identi cadas diferen cas entre os algoritmos de c alculos: em geral, o PBC estimou doses mais elevadas para o PTV, pulmão esquerdo e cora ção, do que os algoritmos de MC. Os algoritmos de MC, entre si, apresentaram resultados semelhantes (com dferen cas at e 2%). Considera-se que o PBC não e preciso na determina ção de dose em meios homog eneos e na região de build-up. Nesse sentido, atualmente na cl nica, a equipa da F sica realiza medi ções para adquirir dados para outro algoritmo de c alculo. Apesar de melhor homogeneidade e conformidade no PTV considera-se que h a um aumento de risco de cancro na mama contralateral quando se utilizam t ecnicas não-tangenciais. Os resultados globais dos estudos apresentados confirmam o excelente poder de previsão com precisão na determinação e c alculo das distribui ções de dose nos orgãos e tecidos das tecnicas de simulação de Monte Carlo usados.---------ABSTRACT:Breast cancer is the most frequent in women. Scienti c knowledge and technology have created many and di erent strategies to treat this pathology. Radiotherapy (RT) is in the actual standard guidelines for most of breast cancer treatments. However, radiation is a two-sword weapon: although it may heal cancer, it may also induce secondary cancer. The contralateral breast (CLB) is a susceptible organ to absorb doses with the treatment of the other breast, being at signi cant risk to develop a secondary tumor. New radiation related techniques, with more complex delivery strategies and promising results are being implemented and used in radiotherapy departments. However some questions have to be properly addressed, such as: Is it safe to move to complex techniques to achieve better conformation in the target volumes, in breast radiotherapy? What happens to the target volumes and surrounding healthy tissues? How accurate is dose delivery? What are the shortcomings and limitations of currently used treatment planning systems (TPS)? The answers to these questions largely rely in the use of Monte Carlo (MC) simulations using state-of-the-art computer programs to accurately model the di erent components of the equipment (target, lters, collimators, etc.) and obtain an adequate description of the radiation elds used, as well as the detailed geometric representation and material composition of organs and tissues. This work aims at investigating the impact of treating left breast cancer using di erent radiation therapy (RT) techniques f-IMRT (forwardly-planned intensity-modulated), inversely-planned IMRT (IMRT2, using 2 beams; IMRT5, using 5 beams) and dynamic conformal arc (DCART) RT and their e ects on the whole-breast irradiation and in the undesirable irradiation of the surrounding healthy tissues. Two algorithms of iPlan BrainLAB TPS were used: Pencil Beam Convolution (PBC)and commercial Monte Carlo (iMC). Furthermore, an accurate Monte Carlo (MC) model of the linear accelerator used (a Trilogy R VARIANR) was done with the EGSnrc MC code, to accurately determine the doses that reach the CLB. For this purpose it was necessary to model the new High De nition multileaf collimator that had never before been simulated. The model developed was then included on the EGSnrc MC package of National Research Council Canada (NRC). The linac was benchmarked with water measurements and later on validated against the TPS calculations. The dose distributions in the planning target volume (PTV) and the dose to the organs at risk (OAR) were compared analyzing dose-volume histograms; further statistical analysis was performed using IBM SPSS v20 software. For PBC, all the techniques provided adequate coverage of the PTV. However, statistically significant dose di erences were observed between the techniques, in the PTV, OAR and also in the pattern of dose distribution spreading into normal tissues. IMRT5 and DCART spread low doses into greater volumes of normal tissue, right breast, right lung, heart and even the left lung than tangential techniques (f-IMRT and IMRT2). However,IMRT5 plans improved distributions for the PTV, exhibiting better conformity and homogeneity in target and reduced high dose percentages in ipsilateral OAR. DCART did not present advantages over any of the techniques investigated. Di erences were also found comparing the calculation algorithms: PBC estimated higher doses for the PTV, ipsilateral lung and heart than the MC algorithms predicted. The MC algorithms presented similar results (within 2% di erences). The PBC algorithm was considered not accurate in determining the dose in heterogeneous media and in build-up regions. Therefore, a major e ort is being done at the clinic to acquire data to move from PBC to another calculation algorithm. Despite better PTV homogeneity and conformity there is an increased risk of CLB cancer development, when using non-tangential techniques. The overall results of the studies performed con rm the outstanding predictive power and accuracy in the assessment and calculation of dose distributions in organs and tissues rendered possible by the utilization and implementation of MC simulation techniques in RT TPS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In vivo dosimetry is a way to verify the radiation dose delivered to the patient in measuring the dose generally during the first fraction of the treatment. It is the only dose delivery control based on a measurement performed during the treatment. In today's radiotherapy practice, the dose delivered to the patient is planned using 3D dose calculation algorithms and volumetric images representing the patient. Due to the high accuracy and precision necessary in radiation treatments, national and international organisations like ICRU and AAPM recommend the use of in vivo dosimetry. It is also mandatory in some countries like France. Various in vivo dosimetry methods have been developed during the past years. These methods are point-, line-, plane- or 3D dose controls. A 3D in vivo dosimetry provides the most information about the dose delivered to the patient, with respect to ID and 2D methods. However, to our knowledge, it is generally not routinely applied to patient treatments yet. The aim of this PhD thesis was to determine whether it is possible to reconstruct the 3D delivered dose using transmitted beam measurements in the context of narrow beams. An iterative dose reconstruction method has been described and implemented. The iterative algorithm includes a simple 3D dose calculation algorithm based on the convolution/superposition principle. The methodology was applied to narrow beams produced by a conventional 6 MV linac. The transmitted dose was measured using an array of ion chambers, as to simulate the linear nature of a tomotherapy detector. We showed that the iterative algorithm converges quickly and reconstructs the dose within a good agreement (at least 3% / 3 mm locally), which is inside the 5% recommended by the ICRU. Moreover it was demonstrated on phantom measurements that the proposed method allows us detecting some set-up errors and interfraction geometry modifications. We also have discussed the limitations of the 3D dose reconstruction for dose delivery error detection. Afterwards, stability tests of the tomotherapy MVCT built-in onboard detector was performed in order to evaluate if such a detector is suitable for 3D in-vivo dosimetry. The detector showed stability on short and long terms comparable to other imaging devices as the EPIDs, also used for in vivo dosimetry. Subsequently, a methodology for the dose reconstruction using the tomotherapy MVCT detector is proposed in the context of static irradiations. This manuscript is composed of two articles and a script providing further information related to this work. In the latter, the first chapter introduces the state-of-the-art of in vivo dosimetry and adaptive radiotherapy, and explains why we are interested in performing 3D dose reconstructions. In chapter 2 a dose calculation algorithm implemented for this work is reviewed with a detailed description of the physical parameters needed for calculating 3D absorbed dose distributions. The tomotherapy MVCT detector used for transit measurements and its characteristics are described in chapter 3. Chapter 4 contains a first article entitled '3D dose reconstruction for narrow beams using ion chamber array measurements', which describes the dose reconstruction method and presents tests of the methodology on phantoms irradiated with 6 MV narrow photon beams. Chapter 5 contains a second article 'Stability of the Helical TomoTherapy HiArt II detector for treatment beam irradiations. A dose reconstruction process specific to the use of the tomotherapy MVCT detector is presented in chapter 6. A discussion and perspectives of the PhD thesis are presented in chapter 7, followed by a conclusion in chapter 8. The tomotherapy treatment device is described in appendix 1 and an overview of 3D conformai- and intensity modulated radiotherapy is presented in appendix 2. - La dosimétrie in vivo est une technique utilisée pour vérifier la dose délivrée au patient en faisant une mesure, généralement pendant la première séance du traitement. Il s'agit de la seule technique de contrôle de la dose délivrée basée sur une mesure réalisée durant l'irradiation du patient. La dose au patient est calculée au moyen d'algorithmes 3D utilisant des images volumétriques du patient. En raison de la haute précision nécessaire lors des traitements de radiothérapie, des organismes nationaux et internationaux tels que l'ICRU et l'AAPM recommandent l'utilisation de la dosimétrie in vivo, qui est devenue obligatoire dans certains pays dont la France. Diverses méthodes de dosimétrie in vivo existent. Elles peuvent être classées en dosimétrie ponctuelle, planaire ou tridimensionnelle. La dosimétrie 3D est celle qui fournit le plus d'information sur la dose délivrée. Cependant, à notre connaissance, elle n'est généralement pas appliquée dans la routine clinique. Le but de cette recherche était de déterminer s'il est possible de reconstruire la dose 3D délivrée en se basant sur des mesures de la dose transmise, dans le contexte des faisceaux étroits. Une méthode itérative de reconstruction de la dose a été décrite et implémentée. L'algorithme itératif contient un algorithme simple basé sur le principe de convolution/superposition pour le calcul de la dose. La dose transmise a été mesurée à l'aide d'une série de chambres à ionisations alignées afin de simuler la nature linéaire du détecteur de la tomothérapie. Nous avons montré que l'algorithme itératif converge rapidement et qu'il permet de reconstruire la dose délivrée avec une bonne précision (au moins 3 % localement / 3 mm). De plus, nous avons démontré que cette méthode permet de détecter certaines erreurs de positionnement du patient, ainsi que des modifications géométriques qui peuvent subvenir entre les séances de traitement. Nous avons discuté les limites de cette méthode pour la détection de certaines erreurs d'irradiation. Par la suite, des tests de stabilité du détecteur MVCT intégré à la tomothérapie ont été effectués, dans le but de déterminer si ce dernier peut être utilisé pour la dosimétrie in vivo. Ce détecteur a démontré une stabilité à court et à long terme comparable à d'autres détecteurs tels que les EPIDs également utilisés pour l'imagerie et la dosimétrie in vivo. Pour finir, une adaptation de la méthode de reconstruction de la dose a été proposée afin de pouvoir l'implémenter sur une installation de tomothérapie. Ce manuscrit est composé de deux articles et d'un script contenant des informations supplémentaires sur ce travail. Dans ce dernier, le premier chapitre introduit l'état de l'art de la dosimétrie in vivo et de la radiothérapie adaptative, et explique pourquoi nous nous intéressons à la reconstruction 3D de la dose délivrée. Dans le chapitre 2, l'algorithme 3D de calcul de dose implémenté pour ce travail est décrit, ainsi que les paramètres physiques principaux nécessaires pour le calcul de dose. Les caractéristiques du détecteur MVCT de la tomothérapie utilisé pour les mesures de transit sont décrites dans le chapitre 3. Le chapitre 4 contient un premier article intitulé '3D dose reconstruction for narrow beams using ion chamber array measurements', qui décrit la méthode de reconstruction et présente des tests de la méthodologie sur des fantômes irradiés avec des faisceaux étroits. Le chapitre 5 contient un second article intitulé 'Stability of the Helical TomoTherapy HiArt II detector for treatment beam irradiations'. Un procédé de reconstruction de la dose spécifique pour l'utilisation du détecteur MVCT de la tomothérapie est présenté au chapitre 6. Une discussion et les perspectives de la thèse de doctorat sont présentées au chapitre 7, suivies par une conclusion au chapitre 8. Le concept de la tomothérapie est exposé dans l'annexe 1. Pour finir, la radiothérapie «informationnelle 3D et la radiothérapie par modulation d'intensité sont présentées dans l'annexe 2.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Patients affected with intra-thoracic recurrences of primary or secondary lung malignancies after a first course of definitive radiotherapy have limited therapeutic options, and they are often treated with a palliative intent. Re-irradiation with stereotactic ablative radiotherapy (SABR) represents an appealing approach, due to the optimized dose distribution that allows for high-dose delivery with better sparing of organs at risk. This strategy has the goal of long-term control and even cure. Aim of this review is to report and discuss published data on re-irradiation with SABR in terms of efficacy and toxicity. Results indicate that thoracic re-irradiation may offer satisfactory disease control, however the data on outcome and toxicity are derived from low quality retrospective studies, and results should be cautiously interpreted. As SABR may be associated with serious toxicity, attention should be paid for an accurate patients' selection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In medical processes where ionizing radiation is used, dose planning and dose delivery are the key elements to patient safety and treatment success, particularly, when the delivered dose in a single session of treatment can be an order of magnitude higher than the regular doses of radiotherapy. Therefore, the radiation dose should be well defined and precisely delivered to the target while minimizing radiation exposure to surrounding normal tissues [1]. Several methods have been proposed to obtain three-dimensional (3-D) dose distribution [2, 3]. In this paper, we propose an alternative method, which can be easily implemented in any stereotactic radiosurgery center with a magnetic resonance imaging (MRI) facility. A phantom with or without scattering centers filled with Fricke gel solution is irradiated with Gamma Knife(A (R)) system at a chosen spot. The phantom can be a replica of a human organ such as head, breast or any other organ. It can even be constructed from a real 3-D MR image of an organ of a patient using a computer-aided construction and irradiated at a specific region corresponding to the tumor position determined by MRI. The spin-lattice relaxation time T (1) of different parts of the irradiated phantom is determined by localized spectroscopy. The T (1)-weighted phantom images are used to correlate the image pixels intensity to the absorbed dose and consequently a 3-D dose distribution with a high resolution is obtained.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: In order to use a single implant with one treatment plan in fractionated high-dose-rate brachytherapy (HDR-B), applicator position shifts must be corrected prior to each fraction. The authors investigated the use of gold markers for X-ray-based setup and position control between the single fractions. PATIENTS AND METHODS: Caudad-cephalad movement of the applicators prior to each HDR-B fraction was determined on radiographs using two to three gold markers, which had been inserted into the prostate as intraprostatic reference, and one to two radiopaque-labeled reference applicators. 35 prostate cancer patients, treated by HDR-B as a monotherapy between 10/2003 and 06/2006 with four fractions of 9.5 Gy each, were analyzed. Toxicity was scored according to the CTCAE Score, version 3.0. Median follow-up was 3 years. RESULTS: The mean change of applicators positions compared to baseline varied substantially between HDR-B fractions, being 1.4 mm before fraction 1 (range, -4 to 2 mm), -13.1 mm before fraction 2 (range, -36 to 0 mm), -4.1 mm before fraction 3 (range, -21 to 9 mm), and -2.6 mm at fraction 4 (range, -16 to 9 mm). The original position of the applicators could be readjusted easily prior to each fraction in every patient. In 18 patients (51%), the applicators were at least once readjusted > 10 mm, however, acute or late grade > or = 2 genitourinary toxicity was not increased (p = 1.0) in these patients. CONCLUSION: Caudad position shifts up to 36 mm were observed. Gold markers represent a valuable tool to ensure setup accuracy and precise dose delivery in fractionated HDR-B monotherapy of prostate cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The RPC developed a new phantom to ensure comparable and consistent radiation administration in spinal radiosurgery clinical trials. This study assessed the phantom’s dosimetric and anatomic utility. The ‘spine phantom’ is a water filled thorax with anatomy encountered in spinal radiosurgery: target volume, vertebral column, spinal canal, esophagus, heart, and lungs. The dose to the target volume was measured with axial and sagittal planes of radiochromic film and thermoluminescent dosimeters (TLD). The dose distributions were measured with the radiochromic film calibrated to the absolute dose measured by the TLD. Four irradiations were administered: a four angle box plan, a seven angle conformal plan, a seven angle IMRT plan, and a nine angle IMRT plan (denoted as IMRT plan #1 and plan #2, respectively). In each plan, at least 95% of the defined tumor volume received 8 Gy. For each irradiation the planned and administered dose distributions were registered via pinpricks, and compared using point dose measurements, dose profiles, isodose distributions, and gamma analyses. Based on previous experience at the RPC, a gamma analysis was considering passing if greater than 95% of pixels passed the criteria of 5% dose difference and 3 mm distance-to-agreement. Each irradiation showed acceptable agreement in the qualitative assessments and exceeded the 95% passing rate at the 5% / 3 mm criteria, except IMRT plan #1, which was determined to have been poorly localized during treatment administration. The measured and planned dose distributions demonstrated acceptable agreement at the 5% / 3 mm criteria, and the spine phantom was determined to be a useful tool for the remote assessment of an institution’s treatment planning and dose delivery regimen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of immunological adjuvants has been established since 1924 and ever since many candidates have been extensively researched in vaccine development. The controlled release of vaccine is another area of biotechnology research, which is advancing rapidly with great potential and success. Encapsulation of peptide and protein drugs within biodegradable microspheres has been amongst the most successful of approaches within the past decade. The present studies have focused on combining the advantages of microsphere delivery systems composed of biodegradable polylactide (PLLA) and polylactide-co-glycolide (PLGA) polymers with that of safe and effective adjuvants. The research efforts were directed to the development of single-dose delivery vehicles which, can be manufactured easily, safely, under mild and favourable conditions to the encapsulated antigens. In pursuing this objective non ionic block copolymers (NIBCs) (Pluronics@ LI01 and L121) were incorporated within poly-dl-lactide (PDLA) micorospheres prepared with emulsification-diffusion method. LI0I and L121 served both as adjuvants and stabilising agents within these vaccine delivery vehicles. These formulations encapsulating the model antigens lysozyme, ovalbumin (OVA) and diphtheria toxoid (DT) resulted in high entrapment efficiency (99%), yield (96.7%) and elicited high and sustained immune response (IgG titres up to 9427) after one single administration over nine months. The structural integrity of the antigens was preserved within these formulations. In evaluating new approaches for the use of well-established adjuvants such as alum, these particles were incorporated within PLLA and PLGA microspheres at much lesser quantities (5-10 times lower) than those contained within conventional alum-adsorbed vaccines. These studies focused on the incorporation of the clinically relevant tetanus toxoid (TT) antigen within biodegradable microspheres. The encapsulation of both alum particles and TT antigen within these micropheres resulted in preparations with high encapsulation efficiency (95%) and yield (91.2%). The immune response to these particles was also investigated to evaluate the secretion of serum IgG, IgG1, IgG2a and IgG2b after a single administration of these vaccines. The Splenic cells proliferation was also investigated as an indication for the induction of cell mediated immunity. These particles resulted in high and sustained immune response over a period of 14 months. The stability of TT within particles was also investigated under dry storage over a period of several months. NIBC microspheres were also investigated as potential DNA vaccine delivery systems using hepatitis B plasmid. These particles resulted in micro spheres of 3-5 μm diameter and were shown to preserve the integrity of the encapsulated (27.7% entrapment efficiency) hepatitis B plasmid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The impact of curative radiotherapy depends mainly on the total dose delivered homogenously in the targeted volume. Nevertheless, the dose delivery is limited by the tolerated dose of the surrounding healthy tissues. Two different side effects (acute and late) can occur during and after radiotherapy. Of particular interest are the radiation-induced sequelae due to their irreversibility and the potential impact on daily quality of life. In a population treated in one center with the same technique, it appears that individual radiosensitivity clearly exists. In the hypothesis that genetic is involved in this area of research, lymphocytes seem to be the tissue of choice due to easy accessibility. Recently, low percentage of CD4 and CD8 lymphocyte apoptosis were shown to be correlated with high grade of sequelae. In addition, recent data suggest that patients with severe radiation-induced late side effects possess four or more SNP in candidate genes (ATM, SOD2, TGFB1, XRCC1 et XRCC3) and low radiation-induced CD8 lymphocyte apoptosis in vitro.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La fumée du tabac est un aérosol extrêmement complexe constitué de milliers de composés répartis entre la phase particulaire et la phase vapeur. Il a été démontré que les effets toxicologiques de cette fumée sont associés aux composés appartenant aux deux phases. Plusieurs composés biologiquement actifs ont été identifiés dans la fumée du tabac; cependant, il n’y a pas d’études démontrant la relation entre les réponses biologiques obtenues via les tests in vitro ou in vivo et les composés présents dans la fumée entière du tabac. Le but de la présente recherche est de développer des méthodes fiables et robustes de fractionnement de la fumée à l’aide de techniques de séparation analytique et de techniques de détection combinés à des essais in vitro toxicologiques. Une étude antérieure réalisée par nos collaborateurs a démontré que, suite à l’étude des produits de combustion de douze principaux composés du tabac, l’acide chlorogénique s’est avéré être le composé le plus cytotoxique selon les test in vitro du micronoyau. Ainsi, dans cette étude, une méthode par chromatographie préparative en phase liquide a été développée dans le but de fractionner les produits de combustion de l’acide chlorogénique. Les fractions des produits de combustion de l’acide chlorogénique ont ensuite été testées et les composés responsables de la toxicité de l’acide chlorogénique ont été identifiés. Le composé de la sous-fraction responsable en majeure partie de la cytoxicité a été identifié comme étant le catéchol, lequel fut confirmé par chromatographie en phase liquide/ spectrométrie de masse à temps de vol. Des études récentes ont démontré les effets toxicologiques de la fumée entière du tabac et l’implication spécifique de la phase vapeur. C’est pourquoi notre travail a ensuite été focalisé principalement à l’analyse de la fumée entière. La machine à fumer Borgwaldt RM20S® utilisée avec les chambres d’exposition cellulaire de British American Tobacco permettent l’étude in vitro de l’exposition de cellules à différentes concentrations de fumée entière du tabac. Les essais biologiques in vitro ont un degré élevé de variabilité, ainsi, il faut prendre en compte toutes les autres sources de variabilité pour évaluer avec précision la finalité toxicologique de ces essais; toutefois, la fiabilité de la génération de la fumée de la machine n’a jamais été évaluée jusqu’à maintenant. Nous avons donc déterminé la fiabilité de la génération et de la dilution (RSD entre 0,7 et 12 %) de la fumée en quantifiant la présence de deux gaz de référence (le CH4 par détection à ionisation de flamme et le CO par absorption infrarouge) et d’un composé de la phase particulaire, le solanesol (par chromatographie en phase liquide à haute performance). Ensuite, la relation entre la dose et la dilution des composés de la phase vapeur retrouvée dans la chambre d’exposition cellulaire a été caractérisée en utilisant une nouvelle technique d’extraction dite par HSSE (Headspace Stir Bar Sorptive Extraction) couplée à la chromatographie en phase liquide/ spectrométrie de masse. La répétabilité de la méthode a donné une valeur de RSD se situant entre 10 et 13 % pour cinq des composés de référence identifiés dans la phase vapeur de la fumée de cigarette. La réponse offrant la surface maximale d’aire sous la courbe a été obtenue en utilisant les conditions expérimentales suivantes : intervalle de temps d’exposition/ désorption de 10 0.5 min, température de désorption de 200°C pour 2 min et température de concentration cryogénique (cryofocussing) de -75°C. La précision de la dilution de la fumée est linéaire et est fonction de l’abondance des analytes ainsi que de la concentration (RSD de 6,2 à 17,2 %) avec des quantités de 6 à 450 ng pour les composés de référence. Ces résultats démontrent que la machine à fumer Borgwaldt RM20S® est un outil fiable pour générer et acheminer de façon répétitive et linéaire la fumée de cigarette aux cultures cellulaires in vitro. Notre approche consiste en l’élaboration d’une méthodologie permettant de travailler avec un composé unique du tabac, pouvant être appliqué à des échantillons plus complexes par la suite ; ex : la phase vapeur de la fumée de cigarette. La méthodologie ainsi développée peut potentiellement servir de méthode de standardisation pour l’évaluation d’instruments ou de l’identification de produits dans l’industrie de tabac.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we propose a new method of measuring the very slow paramagnetic ion diffusion coefficient using a commercial high-resolution spectrometer. If there are distinct paramagnetic ions influencing the hydrogen nuclear magnetic relaxation time differently, their diffusion coefficients can be measured separately. A cylindrical phantom filled with Fricke xylenol gel solution and irradiated with gamma rays was used to validate the method. The Fricke xylenol gel solution was prepared with 270 Bloom porcine gelatin, the phantom was irradiated with gamma rays originated from a (60)Co source and a high-resolution 200 MHz nuclear magnetic resonance (NMR) spectrometer was used to obtain the phantom (1)H profile in the presence of a linear magnetic field gradient. By observing the temporal evolution of the phantom NMR profile, an apparent ferric ion diffusion coefficient of 0.50 mu m(2)/ms due to ferric ions diffusion was obtained. In any medical process where the ionizing radiation is used, the dose planning and the dose delivery are the key elements for the patient safety and success of treatment. These points become even more important in modern conformal radio therapy techniques, such as stereotactic radiosurgery, where the delivered dose in a single session of treatment can be an order of magnitude higher than the regular doses of radiotherapy. Several methods have been proposed to obtain the three-dimensional (3-D) dose distribution. Recently, we proposed an alternative method for the 3-D radiation dose mapping, where the ionizing radiation modifies the local relative concentration of Fe(2+)/Fe(3+) in a phantom containing Fricke gel and this variation is associated to the MR image intensity. The smearing of the intensity gradient is proportional to the diffusion coefficient of the Fe(3+) and Fe(2+) in the phantom. There are several methods for measurement of the ionic diffusion using NMR, however, they are applicable when the diffusion is not very slow.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pencil beam scanned (PBS) proton therapy has many advantages over conventional radiotherapy, but its effectiveness for treating mobile tumours remains questionable. Gating dose delivery to the breathing pattern is a well-developed method in conventional radiotherapy for mitigating tumour-motion, but its clinical efficiency for PBS proton therapy is not yet well documented. In this study, the dosimetric benefits and the treatment efficiency of beam gating for PBS proton therapy has been comprehensively evaluated. A series of dedicated 4D dose calculations (4DDC) have been performed on 9 different 4DCT(MRI) liver data sets, which give realistic 4DCT extracting motion information from 4DMRI. The value of 4DCT(MRI) is its capability of providing not only patient geometries and deformable breathing characteristics, but also includes variations in the breathing patterns between breathing cycles. In order to monitor target motion and derive a gating signal, we simulate time-resolved beams' eye view (BEV) x-ray images as an online motion surrogate. 4DDCs have been performed using three amplitude-based gating window sizes (10/5/3 mm) with motion surrogates derived from either pre-implanted fiducial markers or the diaphragm. In addition, gating has also been simulated in combination with up to 19 times rescanning using either volumetric or layered approaches. The quality of the resulting 4DDC plans has been quantified in terms of the plan homogeneity index (HI), total treatment time and duty cycle. Results show that neither beam gating nor rescanning alone can fully retrieve the plan homogeneity of the static reference plan. Especially for variable breathing patterns, reductions of the effective duty cycle to as low as 10% have been observed with the smallest gating rescanning window (3 mm), implying that gating on its own for such cases would result in much longer treatment times. In addition, when rescanning is applied on its own, large differences between volumetric and layered rescanning have been observed as a function of increasing number of re-scans. However, once gating and rescanning is combined, HI to within 2% of the static plan could be achieved in the clinical target volume, with only moderately prolonged treatment times, irrespective of the rescanning strategy used. Moreover, these results are independent of the motion surrogate used. In conclusion, our results suggest image guided beam gating, combined with rescanning, is a feasible, effective and efficient motion mitigation approach for PBS-based liver tumour treatments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this work was to develop a comprehensive IMSRT QA procedure that examined, using EPID dosimetry and Monte Carlo (MC) calculations, each step in the treatment planning and delivery process. These steps included verification of the field shaping, treatment planning system (RTPS) dose calculations, and patient dose delivery. Verification of each step in the treatment process is assumed to result in correct dose delivery to the patient. ^ The accelerator MC model was verified against commissioning data for field sizes from 0.8 × 0.8 cm 2 to 10 × 10 cm 2. Depth doses were within 2% local percent difference (LPD) in low gradient regions and 1 mm distance to agreement (DTA) in high gradient regions. Lateral profiles were within 2% LPD in low gradient regions and 1 mm DTA in high gradient regions. Calculated output factors were within 1% of measurement for field sizes ≥1 × 1 cm2. ^ The measured and calculated pretreatment EPID dose patterns were compared using criteria of 5% LPD, 1 mm DTA, or 2% of central axis pixel value with ≥95% of compared points required to pass for successful verification. Pretreatment field verification resulted in 97% percent of the points passing. ^ The RTPS and Monte Carlo phantom dose calculations were compared using 5% LPD, 2 mm DTA, or 2% of the maximum dose with ≥95% of compared points required passing for successful verification. RTPS calculation verification resulted in 97% percent of the points passing. ^ The measured and calculated EPID exit dose patterns were compared using criteria of 5% LPD, 1 mm DTA, or 2% of central axis pixel value with ≥95% of compared points required to pass for successful verification. Exit dose verification resulted in 97% percent of the points passing. ^ Each of the processes above verified an individual step in the treatment planning and delivery process. The combination of these verification steps ensures accurate treatment delivery to the patient. This work shows that Monte Carlo calculations and EPID dosimetry can be used to quantitatively verify IMSRT treatments resulting in improved patient care and, potentially, improved clinical outcome. ^