998 resultados para DNA HYDROLYSIS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ferromagnetic dicopper(II) complexes [Cu(2)(mu-O(2)CCH(3))(mu-OH)(L)(2)(mu-L(1))](PF(6))(2), where L = 1,10-phenanthroline (phen), L(1) = H(2)O in 1 and L = dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), L(1) = CH(3)CN in 2, are prepared and structurally characterized. Crystals of 1 and 2 belong to the monoclinic space group of P2(1)/n and P2(1)/m, respectively. The copper(II) centers display distorted square-pyramidal geometry having a phenanthroline base and two oxygen atoms of the bridging hydroxo and acetate group in the basal plane. The fifth coordination site has weak axially bound bridging solvent molecule H(2)O in 1 and CH(3)CN in 2. The Cu center dot center dot center dot Cu distances are 3.034 and 3.046 angstrom in 1 and 2, respectively. The complexes show efficient hydrolytic cleavage of supercoiled pUC19 DNA as evidenced from the mechanistic studies that include T4 DNA ligase experiments. The binuclear complexes form monomeric copper(II) adducts [Cu(L)(2)(BNPP)](PF(6)) (L = phen, 3; dpq, 4) with bis(4-nitrophenyl)phosphate (BNPP) as a model phosphodiester. The crystal structures of 3 and 4 reveal distorted trigonal bipyramidal geometry in which BNPP binds through the oxygen atom of the phosphate. The kinetic data of the DNA cleavage reactions of the binuclear complexes under pseudo- and true-Michaelis-Menten conditions indicate remarkable enhancement in the DNA hydrolysis rate in comparison to the control data. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A series of macrobicyclic dizinc(II) complexes Zn2L1-2B](ClO4)(4) (1-6) have been synthesized and characterized (L1-2 are polyaza macrobicyclic binucleating ligands, and B is the N,N-donor heterocyclic base (viz. 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen)). The DNA and protein binding, DNA hydrolysis and anticancer activity of these complexes were investigated. The interactions of complexes 1-6 with calf thymus DNA were studied by spectroscopic techniques, including absorption, fluorescence and CD spectroscopy. The DNA binding constant values of the complexes were found to range from 2.80 x 10(5) to 5.25 x 10(5) M-1, and the binding affinities are in the following order: 3 > 6 > 2 > 5 > 1 > 4. All the dizinc(II) complexes 1-6 are found to effectively promote the hydrolytic cleavage of plasmid pBR322 DNA under anaerobic and aerobic conditions. Kinetic data for DNA hydrolysis promoted by 3 and 6 under physiological conditions give observed rate constants (k(obs)) of 5.56 +/- 0.1 and 5.12 +/- 0.2 h(-1), respectively, showing a 10(7)-fold rate acceleration over the uncatalyzed reaction of dsDNA. Remarkably, the macrobicyclic dizinc(II) complexes 1-6 bind and cleave bovine serum albumin (BSA), and effectively promote the caspase-3 and caspase-9 dependent deaths of HeLa and BeWo cancer cells. The cytotoxicity of the complexes was further confirmed by lactate dehydrogenase enzyme levels in cancer cell lysate and content media.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Water soluble dinickel(II) complexes Ni-2(L)(2)(1-2)](NO3)(4) (1-2), where L1-2 are triazole based dinucleating ligands, were synthesized and characterized. The DNA binding, protein binding, DNA hydrolysis and anticancer properties were investigated. The interactions of complexes 1 and 2 with calf thymus DNA were studied by spectroscopic techniques, including absorption and fluorescence spectroscopy. The DNA binding constant values of the complexes 1 and 2 were found to be 2.36 x 10(5) and 4.87 x 10(5) M-1 and the binding affinities are in the following order: 2 > 1. Both the dinickel(II) complexes 1 and 2, promoted the hydrolytic cleavage of plasmid pBR322 DNA under both anaerobic and aerobic conditions. Kinetic data for DNA hydrolysis promoted by 1 and 2 under physiological conditions give the observed rate constants (k(obs)) of 5.05 +/- 0.2 and 5.65 +/- 0.1 h(-1), respectively, which shows 10(8)-fold rate acceleration over the uncatalyzed reaction of ds-DNA. Meanwhile, the interactions of the complex with BSA have also been studied by spectroscopy. Both the complexes 1 and 2 display strong binding propensity and the binding constant (K-b), number of binding sites (n) were obtained are 0.71 x 10(6) 1.47] and 5.62 x 10(6) 1.98] M-1, respectively. The complexes 1 and 2 also promoted the apoptosis against human carcinoma (HeLa, and BeWo) cancer cells. Cytotoxicity of the complexes was further confirmed by lactate dehydrogenase enzyme level in cancer cell lysate and content media. (c) 2013 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lanthanide binuclear complexes can accelerate the cleavage of pUC19 plasmid DNA, yielding predominantly linear form. The saturation kinetics of the cleavage of pUC19 was studied. The observed rates with lanthanide binuclear complexes showed the expected increase with the catalyst concentration. The rate of cleavage is greater than that of lanthanide ions alone. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cleavage of adenosine-5'-monophosphate (5'-AMP), guanosine-5'-monophosphate (5'-GMP), adenosine-3'-monophosphate (3'-AMP) and guanosine-3'-monophosphate (3'-GMP) by lanthanides was investigated by NMR and the method of measuring the liberated phosphates. Rapid cleavage of both 5'-mononucleotides and 3'-mononucleotides by Ce-III and Ce-IV under air at pH 9 and 37 degrees C was observed. Other lanthanides showed less efficiency for hydrolyzing 5'-mononucleotides but 3'-mononucleotides were catalyzed by a range of lanthanide ions. The mechanism for hydrolyzing 3'-mononucleotides by lanthanides was:investigated. The notable difference in reactivity between Ce-III and the other lanthanide ions under air was further studied showing that the cleavage is enhanced with increasing molar fraction of Ce-IV. The fast cleavage of mononucleotides by Ce-III under air at pH 9 is ascribed to the resultant Ce-IV in the reaction mixture. (C) 1997 Elsevier Science Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different DNA selectivity was found for the newly synthesized europium-L-valine complex. Unexpected DNA and RNA selection results showed that europium-L-valine complex can cause single-stranded polydA and polyrA to self-structure. The sigmoidal melting curve profiles indicate the transition is cooperative, similar to the cooperative melting of a duplex DNA. This is different from another europium amino acid complex, europium-L-aspartic acid complex which can induce B-Z transition under the low salt condition. To our knowledge, there is no report to show that a metal-amino acid complex can cause the self-structuring of single-stranded DNA and RNA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cleavage of adenosine-5'-monophosphate (5'-AMP) and guanosine-5'-monophosphate (S-GMP) by Ce4+ and lanthanide complex of 2-carboxyethylgermanium sesquioxide (Ge-132) in acidic and near neutral conditions was investigated by NMR, HPLC and measuring the liberated inorganic phosphate at 37 degrees C and 50 degrees C, The results showed that 5'-GMP and 5'-AMP was converted to guanine (G), 5'-monophosphate (depurination of 5'-GMP), ribose (depurination and dephosphorylation of 5'-GMP), phosphate and adenine (A), 5'-monophosphate (depurination of 5'-AMP), ribose (depurination and dephosphorylation of 5'-AMP), phosphate respectively by Ce4+. In presence of lanthanide complexes, 5'-GMP and 5'-AMP were converted to guanosine (Guo) and phosphate and adenosine (Ado) and phosphate respectively. The mechanism of cleaving 5'-GMP and 5'-AMP is hydrolytic scission.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cleavage of 3',5'-cAMP, 3',5'-cGMP and 3',5'-dcAMP by lanthanides has been investigated by HPLC and H-1 NMR. Rapid cleavage of cAMP, cGMP and dcAMP by Ce(III) under air at pH 8 and 37 degrees C has been observed. Regioselective cleavage of P-O(5') bond in cAMP, cGMP and dc;aMP tu give the corresponding 3'-AMP, 3'-GMP and 3'-dAMP by lanthanide chlorides has been achieved, and 3'-AMP and 3'-GMP are cleaved to adenosine(A) and guanosine(CT) more slowly, respectively, The notable difference in reactivity between Ce(III) and the other lanthanide ions under air has also been studied. The cleavage is enhanced with the increase in the molar fraction of Ce(IV). The fast cleavage of cAMP by Ce(III) under air at pH 8 is ascribed to the resultant Ce(IV) in the reaction mixture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The new trinuclear gadolinium complex [Gd(3)L(2)(NO(3))(2)(H(2)O)(4)]NO(3)center dot 8H(2)O (1) with the unsymmetrical ligand 2-[N-bis-(2-pyridylmethyl)aminomethyl]-4-methyl-6-[N-bis(2-hydroxy-2-oxoethyl)aminomethyl] phenol (H(3)L) was synthesized and characterized. The new ligand H(3)L was obtained in good yield. Complex I crystallizes in an orthorhombic cell, space group Pcab. Kinetic studies show that complex 1 is highly active in the hydrolysis of the substrate 2,4-bis(dinitrophenyl)phosphate (K(m) = 4.09 mM, V(max) = 2.68 x 10(-2) mM s(-1), and k(cat) = V(max)/[1] = 0.67 s(-1)). Through a potentiometric study and determination of the kinetic behavior of 1 in acetonitrile/water solution, the species present in solution could be identified, and a trinuclear monohydroxo species appears to be the most prominent catalyst under mild conditions. Complex 1 displays high efficiency in DNA hydrolytic cleavage, and complete kinetic studies were carried out (K(m) = 4.57 x 10(-4) M, K(cat)` = 3.42 h(-1), and k(cat)`/K(m) = 7.48 x 10(3) M(-1) h(-1)). Studies with a radical scavenger (dimethyl sulfoxide, DMSO) showed that it did not inhibit the activity, indicating the hydrolytic action of 1 in the cleavage of DNA, and studies on the incubation of distamycin with plasmid DNA suggest that 1 is regio-specific, interacting with the minor groove of DNA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human deoxyribonuclease I (DNase I), an enzyme recently approved for treatment of cystic fibrosis (CF), has been engineered to create two classes of mutants: actin-resistant variants, which still catalyze DNA hydrolysis but are no longer inhibited by globular actin (G-actin) and active site variants, which no longer catalyze DNA hydrolysis but still bind G-actin. Actin-resistant variants with the least affinity for actin, as measured by an actin binding ELISA and actin inhibition of [33P] DNA hydrolysis, resulted from the introduction of charged, aliphatic, or aromatic residues at Ala-114 or charged residues on the central hydrophobic actin binding interface at Tyr-65 or Val-67. In CF sputum, the actin-resistant variants D53R, Y65A, Y65R, or V67K were 10-to 50-fold more potent than wild type in reducing viscoelasticity as determined in sputum compaction assays. The reduced viscoelasticity correlated with reduced DNA length as measured by pulsed-field gel electrophoresis. In contrast, the active site variants H252A or H134A had no effect on altering either viscoelasticity or DNA length in CF sputum. The data from both the active site and actin-resistant variants demonstrate that the reduction of viscoelasticity by DNase I results from DNA hydrolysis and not from depolymerization of filamentous actin (F-actin). The increased potency of the actin-resistant variants indicates that G-actin is a significant inhibitor of DNase I in CF sputum. These results further suggest that actin-resistant DNase I variants may have improved efficacy in CF patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The type III restriction endonuclease EcoPI, coded by bacteriophage Fl, cleaves unmodified DNA in the presence of ATP and magnesium ions. We show that purified EcoPI restriction enzyme fails to cleave DNA in the presence of non-hydrolyzable ATP analogs. More importantly, this study demonstrates that EcoPI restriction enzyme has an inherent ATPase activity, and ATP hydrolysis is necessary for DNA cleavage. Furthermore, we show that the progress curve of the reaction with Eco PI restriction enzyme exhibits a lag which is dependent on the enzyme concentration. Kinetic analysis of the progress curves of the reaction suggest slow transitions that can occur during the reaction, characteristic of hysteretic enzymes. The role of ATP in the cleavage mechanism of type III restriction enzymes is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new class of macrobicyclic dinickel(II) complexes Ni2L1,2 B](ClO4)(4) (1-6), where L-1,L-2 are polyaza macrobicyclic binucleating ligands, and B is a N,N-donor heterocyclic base (viz. 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen)) are synthesized and characterized. The redox, catalytic, DNA binding and DNA cleavage properties were studied. They exhibit two irreversible waves in the cathodic region around E-pc = -0.95 V and E-pa = -0.85 V vs. Ag/Ag+ in CH3CN-0.1 M TBAP, respectively. The first order rate constants for the hydrolysis of 4-nitrophenylphosphate to 4-nitrophenolate by the dinickel(II) complexes 1-6 are in the range from 3.36 x 10(-5) to 10.83 x 10(-5) Ms-1. The complexes 3 and 6 show good binding propensity to calf thymus DNA giving binding constant values (K-b) in the range from 3.08 x 10(5) to 5.37 x 10(5) M-1. The binding site sizes and viscosity data suggest the DNA intercalative and/or groove binding nature of the complexes. The complexes display significant hydrolytic cleavage of supercoiled pBR322DNA at pH 7.2 and 37 degrees C. The hydrolytic cleavage of DNA by the complexes is supported by the evidence from free radical quenching and T4 ligase ligation. The pseudo Michaelis-Menten kinetic parameters k(cat) = 5.44 x 10(-2) h(-1) and K-M = 6.23 x 10(-3) M for complex 3 were obtained. Complex 3 also shows an enormous enhancement of the cleavage rate, of 1.5 x 10(6), in comparison to the uncatalysed hydrolysis rate (k = 3.6 x 10(-8) h(-1)) of ds-DNA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Escherichia coli, the filament of RecA formed on single-stranded DNA (ssDNA) is essential for recombinational DNA repair. Although ssDNA-binding protein (SSB) plays a complicated role in RecA reactions in vivo, much of our understanding of the mechanism is based on RecA binding directly to ssDNA. Here we investigate the role of SSB in the regulation of RecA polymerization on ssDNA, based on the differential force responses of a single 576-nucleotide-long ssDNA associated with RecA and SSB. We find that SSB outcompetes higher concentrations of RecA, resulting in inhibition of RecA nucleation. In addition, we find that pre-formed RecA filaments de-polymerize at low force in an ATP hydrolysis- and SSB-dependent manner. At higher forces, re-polymerization takes place, which displaces SSB from ssDNA. These findings provide a physical picture of the competition between RecA and SSB under tension on the scale of the entire nucleoprotein SSB array, which have broad biological implications particularly with regard to competitive molecular binding.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The efficient cleavage of plasmid DNA ( pCAT) by binuclear lanthanide complexes was investigated. At 37 degrees C and neutral pH, both Ho23+L and Er23+L promoted 100% conversion of supercoiled plasmid to the nicked circular form and linear form in 1 h. The corresponding saturation kinetics curve of cleavage of pCAT plasmid by binuclear lanthanide complexes showed the expected increase with catalyst concentration. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The focus of this thesis lies in the development of a sensitive method for the analysis of protein primary structure which can be easily used to confirm the DNA sequence of a protein's gene and determine the modifications which are made after translation. This technique involves the use of dipeptidyl aminopeptidase (DAP) and dipeptidyl carboxypeptidase (DCP) to hydrolyze the protein and the mass spectrometric analysis of the dipeptide products.^ Dipeptidyl carboxypeptidase was purified from human lung tissue and characterized with respect to its proteolytic activity. The results showed that the enzyme has a relatively unrestricted specificity, making it useful for the analysis of the C-terminal of proteins. Most of the dipeptide products were identified using gas chromatography/mass spectrometry (GC/MS). In order to analyze the peptides not hydrolyzed by DCP and DAP, as well as the dipeptides not identified by GC/MS, a FAB ion source was installed on a quadrupole mass spectrometer and its performance evaluated with a variety of compounds.^ Using these techniques, the sequences of the N-terminal and C-terminal regions and seven fragments of bacteriophage P22 tail protein have been verified. All of the dipeptides identified in these analysis were in the same DNA reading frame, thus ruling out the possibility of a single base being inserted or deleted from the DNA sequence. The verification of small sequences throughout the protein sequence also indicates that no large portions of the protein have been removed after translation. ^