57 resultados para DIPYRONE
Resumo:
A simple and rapid flow-injection spectrophotometric method is reported for the determination of dipyrone in pharmaceutical formulations. The method is based on the reaction of dipyrone with ammonium molybdate in acidic medium to produce blue molybdenum, which was detected spectrophotometrically at 620 nm. The analyte was determined in a single-line flow system. The calibration curve obtained was linear in the range of 5x10(-4) to 8x10(-3) mol L-1 for dipyrone concentration and the precision ( s r =1.7%) was satisfactory. The method proved to be selective and adequately sensitive. Application of the method to the analysis of pharmaceutical samples resulted in excellent accuracy; the percent mean recoveries were in the range 95.3%-101% and relative errors less than 5.0% for five pharmaceutical formulations were found.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An amperometric dipyrone sensor based on a polymeric nickel-salen (salen = N,N'-ethylenebis(salicydeneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at a platinum electrode in acetonitrile/tetrabuthylamonium perchlorate by cyclic voltammetry. After cycling the modified electrode in a 0.50 mol L-1 KCl solution, the estimated surface concentration was found to be equal to 1.29 x 10(-9) mol cm(-2). This is a typical behavior of an electrode surface immobilized with a redox couple that can usually be considered as a reversible single-electron reduction/oxidation of the nickel(II)/nickel(III) couple. A plot of the anodic current versus the dipyrone concentration for chronoamperometry (potential fixed = +0.50 V) at the sensor was linear in the 4.7 x 10(-6) to 1.1 x 10(-4) mol L-1 concentration range and the concentration limit was 1.2 x 10(-6) mol L-1. The proposed electrode is useful for the quality control and routine analysis of dipyrone in pharmaceutical formulations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A spectrophotometric method for the determination of dipyrone in pharmaceutical preparations is proposed. This method is based on selective oxidation of dipyrone, in the presence of sulphuric acid, splitting off formaldehyde which reacts with chromotropic acid, also in a sulphuric acid medium, producing a violet-red compound (lambda(max) 575 nm). Beer's law is obeyed in a concentration range of 0.57-5.7 ppm dipyrone with an excellent correlation coefficient (r = 0.9997). The results show a simple, accurate, selective and readily applied method to the determination of dipyrone in pharmaceutical products. The analytical results obtained for these products by the proposed method are in agreement with those of the Brazilian Pharmacopoeia procedure. No interference was observed from common excipients in formulations. Recoveries were within 98.7-101.2%, with standard deviations ranging from 0.2 to 1.7%. (C) 1999 Elsevier B.V. S.A. All rights reserved.
Resumo:
Paw edema was induced in male Wistar rats (200-250 g) by intraplantar (ipl) administration of 2.5 mu g endotoxin (Etx). Etx, like carrageenin, produced two distinct edema formation phases, an early phase (75 min) followed by a late phase (7 h). We showed that the edema formation in the early phase was antagonized by dipyrone (80 mg/kg, ip) and indomethacin (1 mg/kg, ip) by 52% and 55%, respectively, and that the late phase was resistant to these drugs. These results suggest that in the early phase prostaglandins appear to be involved in the process. However, the activation of the kinin cascade leading to the release of other mediators may be involved in the increase of edema in the late phase. To test this hypothesis, we investigated whether the release of nitric oxide (NO) is involved in the mechanism of endotoxin-induced rat paw edema during the late phase, using N omega-nitro-L-arginine methyl ester (L-NAME) (50 mu g, ipl) as inhibitor of NO synthase and L-arginine (1 mg, ipl) as substrate of NO synthase. The paw edema induced by Etx was inhibited by L-NAME by 56% and increased by L-arginine by 81%. Furthermore, L-arginine given in combination with L-NAME completely reversed the inhibition of Etx-induced edema produced by L-NAME. These results support the hypothesis that in the late phase NO production is associated with the edema evoked by Etx.
Resumo:
The preparation and electrochemical characterization of a carbon paste electrode modified with N.N′-ethylenebis(salicylideneiminato) oxovanadium(IV) complex ([VO(Salen)]) as well as its behavior as electrocatalyst toward the oxidation of dipyrone were investigated. The electrochemical behavior of the modified electrode and the electrooxidation of dipyrone were explored using cyclic voltammetry. The voltammetric response of the modified electrode is based on two reactions. One electrochemical related to the oxidation of the metallic center of the [VO(Salen)] and the other involving the chemical redox process involving the oxidized form of the complex and the reduced form of dipyrone. The best voltammetric response was observed for a paste composition of 25% (m/m) [VO(Salen)], KCl solution pH from 5.5 to 8.0 as the electrolyte and potential scan rate of 10 mV s-1 in the presence of dipyrone. A linear voltammetric response for dipyrone was obtained in the concentration range from 9.9 × 106 to 2.8 × 10 -3 mol L-1, with a detection limit of 7.2 × 10 -6 mol L-1. Among of several compounds tested as potential interference, only ascorbic acid presented some interference. The proposed electrode is useful for the quality control and routine analysis of dipyrone in pharmaceutical formulations.
Resumo:
This paper describes a simple, portable and environmentally friendly method for the rapid determination of dipyrone in pharmaceuticals by using diffuse reflectance spectroscopy. The proposed method is based on the reflectance measurements of the orange compound produced from the spot test reaction between dipyrone and p-dimethylaminocinnamaldehyde (p-DAC), in acid medium, using a filter paper as solid support. Experimental design methodologies were used to optimize the measurement conditions. All reflectance measurements were carried out at 510 nm and the linear range was from 1.42 × 10-4-2.85 × 10-3 mol L-1, with a correlation coefficient of 0.999. The limit of detection (LOD) and the limit of quantification (LOQ) were 1.20 × 10-5 mol L-1 and 4.00 × 10-5 mol L-1, respectively. The intraday precision and interday precision were studied for 10 replicate analyses of 7.90 × 10-4 mol L-1 dipyrone solution. The coefficients of variation were 1.1 and 0.9%, respectively. The proposed method was applied successfully to the determination of dipyrone in commercial brands of pharmaceuticals. No interferences were observed from the common excipients in formulations. The results obtained by the proposed method were favorably compared with those given by the Brazilian Pharmacopoeia procedure at 95% confidence level. ©2007 Sociedade Brasileira de Química.
Resumo:
This work studied the degradation of dipyrone, via electrochemical processes and via electro-Fenton reaction using a 4% CeO2/C gas diffusion electrode (GDE) prepared via modified polymeric precursor method. This material was used to electrochemically generate H2O2 through oxygen reduction. The mean crystallite sizes estimated by the Scherrer equation for 4% CeO2/C were 4 nm for CeO2-x (0 4 4) and 5 nm for CeO2 (1 1 1) while using transmission electron microscopy (TEM) the mean nanoparticle size was 5.4 nm. X-ray photoelectron spectroscopy (XPS) measurements revealed nearly equal concentrations of Ce(III) and Ce(IV) species on carbon, which contained high oxygenated acid species like CO and OCO. Electrochemical degradation using Vulcan XC 72R carbon showed that the dipyrone was not removed during the two hour electrolysis in all applied potentials by electro-degradation. Besides, when the Fenton process was employed the degradation was much similar when using cerium catalysts but the mineralization reaches just to 50% at -1.1 V. However, using the CeO2/C GDE, in 20 min all of the dipyrone was degraded with 26% mineralization at -1.3 V and when the Fenton process was employed, all of the dipyrone was removed after 5 min with 57% mineralization at -1.1 V. Relative to Vulcan XC72R, ceria acts as an oxygen buffer leading to an increase in the local oxygen concentration, facilitating H2O2 formation and consequently improving the dipyrone degradation © 2013 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To compare the effects of dipyrone, meloxicam, and of the combination of these drugs on hemostasis in dogs. Prospective, blinded, randomized crossover study. Research laboratory at a veterinary teaching hospital. Six adult dogs. Animals received 4 intravenous treatments with 15-day washout intervals: control (physiological saline, 0.1 mL/kg), meloxicam (0.2 mg/kg), dipyrone (25 mg/kg), and dipyrone-meloxicam (25 and 0.2 mg/kg, respectively). A jugular catheter was placed for drug injection and for collecting samples for whole blood platelet aggregation (WBPA) and thromboelastometry assays at baseline, 1, 2, 3, 5, and 8 hours after treatment administration. The percent change from baseline of lag time and of the area under the curve (AUC) of impedance changes in response to collagen-induced platelet activation were recorded during WBPA. Thromboelastometry-derived parameters included clotting time, clot formation time, alpha-angle, and maximum clot firmness. The buccal mucosal bleeding time was evaluated by a blinded observer at baseline, 1, 3, and 5 hours after treatment injection. No significant changes in WBPA and thromboelastometry were recorded in the control treatment. Dipyrone significantly (P < 0.05) increased the lag time for 2 hours and decreased the AUC for 3 hours after injection. Meloxicam did not alter WBPA. Dipyrone-meloxicam significantly increased lag time for 2 hours and decreased the AUC for 5 hours after treatment injection. Experimental treatments did not differ from the control treatment for thromboelastometry and buccal mucosal bleeding time. While meloxicam does not alter hemostasis by the methods evaluated, dipyrone inhibits platelet aggregation for up to 3 hours. Meloxicam-dipyrone combination causes more prolonged inhibition of platelet function than dipyrone alone. Decreased platelet aggregation induced by dipyrone and dipyrone-meloxicam does not appear to impact the viscoelastic properties of the blood clot nor increase the risk of bleeding in dogs without preexisting hemostatic disorders.