1000 resultados para DENTURE-BASE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluorinated denture base acrylic resins can present more stable physical properties when compared with conventional polymers. This study evaluated the incorporation of a fluoroalkyl methacrylate (FMA) mixture in a denture base material and its effect on roughness and flexural strength. A swelling behavior assessment of acrylic resin specimens (n=3, per substance) after 12 h of FMA or methyl methacrylate (MMA) immersion was conducted to determine the solvent properties. Rectangular specimens (n=30) were allocated to three groups, according to the concentration of FMA substituted into the monomer component of a heat-polymerized acrylic resin (Lucitone 550), as follows: 0% (control), 10% and 20% (v/v). Acrylic resin mixed with concentrations of 25% or more did not reach the dough stage and was not viable. The surface roughness and flexural strength of the specimens were tested. Variables were analyzed by ANOVA and Tukey's test (a=0.05). Immersion in FMA produced negligible swelling, and MMA produced obvious swelling and dissolution of the specimens. Surface roughness at concentrations of 0%, 10% and 20% were: 0.25 ± 0.04, 0.24 ± 0.04, 0.22 ± 0.03 mm (F=1.78; p=0.189, not significant). Significant differences were found for flexural strength (F=15.92; p<0.001) and modulus of elasticity (F=7.67; p=0.002), with the following results: 96 ± 6, 82 ± 5, 84 ± 6 MPa, and 2,717 ± 79, 2,558 ± 128, 2574 ± 87 MPa, respectively. The solvent properties of FMA against acrylic resin are weak, which would explain why concentrations over 20% were not viable. Surface changes were not detected after the incorporation of FMA in the denture base acrylic resin tested. The addition of FMA into denture base resin may lower the flexural strength and modulus of elasticity, regardless of the tested concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study evaluated the effect of repeated simulated microwave disinfection on physical and mechanical properties of Clássico, Onda-Cryl and QC-20 denture base acrylic resins. Aluminum patterns were included in metallic or plastic flasks with dental stone following the traditional packing method. The powder/liquid mixing ratio was established according to the manufacturer's instructions. After water-bath polymerization at 74ºC for 9 h, boiling water for 20 min or microwave energy at 900 W for 10 min, the specimens were deflasked after flask cooling and finished. Each specimen was immersed in 150 mL of distilled water and underwent 5 disinfection cycles in a microwave oven set at 650 W for 3 min. Non-disinfected and disinfected specimens were subjected to the following tets: Knoop hardness test was performed with 25 g load for 10 s, impact strength test was done using the Charpy system with 40 kpcm, and 3-point bending test (flexural strength) was performed at a crosshead speed of 0.5 mm/min until fracture. Data were analyzed statistically by ANOVA and Tukey's test (α= 0.05%). Repeated simulated microwave disinfections decreased the Knoop hardness of Clássico and Onda-Cryl resins and had no effect on the impact strength of QC-20. The flexural strength was similar for all tested resins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This in vitro study evaluated the temperature of dentures after different microwave irradiation protocols. Two complete dentures (one maxillary and one mandibular denture) were irradiated separately 4 times for each of the following 5 protocols: dentures immersed in water (G1- 6 min, G2- 3 min); dentures kept dry (G3- 6 min); dentures placed in the steam sterilizer (G4- 6 min, G5- 3 min). The final temperature of the dentures was gauged in a thin and in a thick area of each denture with an infrared thermometer. All groups presented an increase in the resin base temperature. The thin areas of the dentures underwent greater heating than the thick areas. There was no significant difference (p>0.05) between the final mean temperatures of dentures immersed in water for 6 (G1) and 3 min (G2). However, the final mean temperatures recorded in G1 and G2 exceeded 71°C and were significantly higher (<0.001) than the final mean temperatures recorded in the other groups. It may be concluded that denture base resins subjected to microwave irradiation immersed in water may be exposed to deleterious temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study evaluated the effect of different concentrations of ethanol on hardness, roughness, flexural strength, and color stability of a denture base material using a microwave-processed acrylic resin as a model system. Materials and Methods: Sixty circular (14 x 4 mm) and 60 rectangular microwave-polymerized acrylic resin specimens (65 x 10 x 3 mm(3)) were employed in this study. The sample was divided into six groups according to the ethanol concentrations used in the immersion solution, as follows: 0% (water), 4.5%, 10%, 19%, 42%, and 100%. The specimens remained immersed for 30 days at 37 degrees C. The hardness test was performed by a hardness tester equipped with a Vickers diamond penetrator, and a surface roughness tester was used to measure the surface roughness of the specimens. Flexural strength testing was carried out on a universal testing machine. Color alterations (Delta E) were measured by a portable spectrophotometer after 12 and 30 days. Variables were analyzed by ANOVA/Tukey`s test (alpha = 0.05). Results: For the range of ethanol-water solutions for immersion (water only, 4.5%, 10%, 19.5%, 42%, and 100%), the following results were obtained for hardness (13.9 +/- 2.0, 12.1 +/- 0.7, 12.9 +/- 0.9, 11.2 +/- 1.5, 5.7 +/- 0.3, 2.7 +/- 0.5 VHN), roughness (0.13 +/- 0.01, 0.15 +/- 0.07, 0.13 +/- 0.05, 0.13 +/- 0.02, 0.23 +/- 0.05, 0.41 +/- 0.19 mu m), flexural strength (90 +/- 12, 103 +/- 18, 107 +/- 16, 90 +/- 25, 86 +/- 22, 8 +/- 2 MPa), and color (0.8 +/- 0.6, 0.8 +/- 0.3, 0.7 +/- 0.4, 0.9 +/- 0.3, 1.3 +/- 0.3, 3.9 +/- 1.5 Delta E) after 30 days. Conclusions: The findings of this study showed that the ethanol concentrations of tested drinks affect the physical properties of the investigated acrylic resin. An obvious plasticizing effect was found, which could lead to a lower in vivo durability associated with alcohol consumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study evaluated the effect of different microwave polymerization cycles on the color changes of a microwave-processed denture base resin after accelerated aging and immersion in beverages. Materials and Methods: Specimens of light pink acrylic resin were divided into three groups according to polymerization cycle: (A) 500 W for 3 minutes, (B) 90 W for 13 minutes + 500 W for 90 seconds, and (C) 320 W for 3 minutes + 0 W for 4 minutes + 720 W for 3 minutes. Control groups were a heat-processed acrylic resin (T) and a chemically activated denture repair resin (Q). Eight specimens per group were aged in an artificial aging chamber and evaluated at 20, 192, and 384 hours. Another series of 40 specimens per group were immersed in water, coffee, tea, cola, or red wine and evaluated at 1, 12, and 36 days. Color was measured by a spectrophotometer before and after aging or immersion. Color changes (Delta E) were analyzed by ANOVA/Bonferroni t-test (alpha = 0.05). Results: Mean Delta E (+/- SD) after 384 hours of accelerated aging were (A) 2.51 +/- 0.50; (B) 3.16 +/- 1.09; (C) 2.89 +/- 1.06; (T) 2.64 +/- 0.34; and (Q) 9.03 +/- 0.40. Group Q had a significantly higher Delta E than the other groups. Color changes of immersed specimens were significantly influenced by solutions and time, but the five groups showed similar values. Mean Delta E at 36 days were (water) 1.4 +/- 0.8; (coffee) 1.3 +/- 0.6; (tea) 1.7 +/- 0.5; (cola) 1.4 +/- 0.7; and (red wine) 10.2 +/- 2.7. Results were similar among the five test groups. Conclusions: Color changes of the microwave-polymerized denture base resin tested were not affected by different polymerization cycles after accelerated aging or immersion in beverages. These changes were similar to the conventional heat-polymerized acrylic resin test, but lower than the repair resin after accelerated aging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to evaluate the thermocycling effects and shear bond strength of acrylic resin teeth to denture base resins. Materials and Methods: Three acrylic teeth (Biotone, Trilux, Ivoclar) were chosen for bonding to four denture base resins: microwave-polymerized (Acron MC), heat-polymerized (Lucitone 550 and QC-20), and light-polymerized (Versyo. bond). Twenty specimens were produced for each denture base/acrylic tooth combination and were divided into two groups (n = 10): without thermocycling (control groups) and thermocycled groups submitted to 5000 cycles between 4 and 60 degrees C. Shear strength tests (MPa) were performed with a universal testing machine at a crosshead speed of 1 mm/min. Statistical analysis of the results was carried out with three-way ANOVA and Bonferroni`s multiple comparisons post hoc analysis for test groups (alpha = 0.05). Results: The shear bond strengths of Lucitone/Biotone, Lucitone/Trilux, and Versyo/Ivoclar specimens were significantly decreased by thermocycling, compared with the corresponding control groups (p < 0.05). The means of Acron/Ivoclar and Lucitone/Ivoclar specimens increased after thermocycling (p < 0.05). The highest mean shear bond strength value was observed with Lucitone/Biotone in the control group (14.54 MPa) and the lowest with QC-20/Trilux in the thermocycled group (3.69 MPa). Conclusion: Some acrylic tooth/denture base resin combinations can be more affected by thermocycling; effects vary based upon the materials used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bond failures at the acrylic teeth and denture base resin interface are still a common clinical problem in prosthodontics. The effect of methyl methacrylate (MMA) monomer on the bond strength of three types of denture base resins (Acron MC, Lucitone 550 and QC-20) to two types of acrylic teeth (Biotone and Trilux) was evaluated. Twenty specimens were produced for each denture base resin/acrylic tooth combination and were randomly divided into control (acrylic teeth received no surface treatment) and experimental groups (MMA was applied to the surface of the acrylic teeth for 180 s) and were submitted to shear tests (1 mm/mm). Data (MPa) were analyzed using three-way ANOVA/Student`s test (alpha = 0.05). MMA increased the bond strength of Lucitone denture base resins and decreased the bond strength of QC-20. No difference was detected for the bond strength of Acron MC base resin after treatment with MMA. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The method of porosity analysis by water absorption has been carried out by the storage of the specimens in pure water, but it does not exclude the potential plasticising effect of the water generating unreal values of porosity. Objective: The present study evaluated the reliability of this method of porosity analysis in polymethylmethacrylate denture base resins by the determination of the most satisfactory solution for storage (S), where the plasticising effect was excluded. Materials and methods: Two specimen shapes (rectangular and maxillary denture base) and two denture base resins, water bath-polymerised (Classico) and microwave-polymerised (Acron MC) were used. Saturated anhydrous calcium chloride solutions (25%, 50%, 75%) and distilled water were used for specimen storage. Sorption isotherms were used to determine S. Porosity factor (PF) and diffusion coefficient (D) were calculated within S and for the groups stored in distilled water. anova and Tukey tests were performed to identify significant differences in PF results and Kruskal-Wallis test and Dunn multiple comparison post hoc test, for D results (alpha = 0.05). Results: For Acron MC denture base shape, FP results were 0.24% (S 50%) and 1.37% (distilled water); for rectangular shape FP was 0.35% (S 75%) and 0.19% (distilled water). For Classico denture base shape, FP results were 0.54% (S 75%) and 1.21% (distilled water); for rectangular shape FP was 0.7% (S 50%) and 1.32% (distilled water). FP results were similar in S and distilled water only for Acron MC rectangular shape (p > 0.05). D results in distilled water were statistically higher than S for all groups. Conclusions: The results of the study suggest that an adequate solution for storing specimens must be used to measure porosity by water absorption, based on excluding the plasticising effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bond failures at the acrylic teeth and denture base resin interface are still a common clinical problem in prosthodontics. The effect of methyl methacrylate (MMA) monomer on the bond strength of three types of denture base resins (Acron MC, Lucitone 550 and QC-20) to two types of acrylic teeth (Biotone and Trilux) was evaluated. Twenty specimens were produced for each denture base resin/acrylic tooth combination and were randomly divided into control (acrylic teeth received no surface treatment) and experimental groups (MMA was applied to the surface of the acrylic teeth for 180 s) and were submitted to shear tests (1 mm/mm). Data (MPa) were analyzed using three-way ANOVA/Student's test (alpha = 0.05). MMA increased the bond strength of Lucitone denture base resins and decreased the bond strength of QC-20. No difference was detected for the bond strength of Acron MC base resin after treatment with MMA. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective:This study investigated the efficacy of different techniques for the union of fragments of a denture before repair and on the accuracy of the reposition.Materials and methods:For this study, 20 maxillary dentures made with Lucitone 550 heat-cured resin were used. Points were determined with a scanner on the cusp of the teeth, as a measurement of the segments. After digitisation, each model was exported to the AUTOCAD R 14 program and two-dimensional measurements of the distances between the marked points were made. After the initial analysis, the dentures were fractured into two segments using an impact test machine. For the repair, maxillary dentures were divided into two groups; in the first, the repair was carried out using Kerr's sticky wax and in the second group, Super Bonder was used to join the fragments, with subsequent inclusion of DENTSPLY((R)) Repair Material resin. After the repair, the points of the maxillary dentures were measured again. The numerical values obtained were tabulated to compare the measurements before fracture and after the repair. For statistical analysis, analysis of variance was employed, using a single factor and double factor, followed by the Tukey test with a reliability of 95%.Results:The results demonstrated a statistically significant difference between the materials used to join the dentures for repair, where the dentures were joined with sticky wax presented a larger variation in the distances between the points.Conclusion:The variation in distances between the points is influenced by the agent of repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)