950 resultados para DELETION DIAGNOSTICS
Resumo:
In this work we propose and analyze nonlinear elliptical models for longitudinal data, which represent an alternative to gaussian models in the cases of heavy tails, for instance. The elliptical distributions may help to control the influence of the observations in the parameter estimates by naturally attributing different weights for each case. We consider random effects to introduce the within-group correlation and work with the marginal model without requiring numerical integration. An iterative algorithm to obtain maximum likelihood estimates for the parameters is presented, as well as diagnostic results based on residual distances and local influence [Cook, D., 1986. Assessment of local influence. journal of the Royal Statistical Society - Series B 48 (2), 133-169; Cook D., 1987. Influence assessment. journal of Applied Statistics 14 (2),117-131; Escobar, L.A., Meeker, W.Q., 1992, Assessing influence in regression analysis with censored data, Biometrics 48, 507-528]. As numerical illustration, we apply the obtained results to a kinetics longitudinal data set presented in [Vonesh, E.F., Carter, R.L., 1992. Mixed-effects nonlinear regression for unbalanced repeated measures. Biometrics 48, 1-17], which was analyzed under the assumption of normality. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this paper is to develop a Bayesian analysis for nonlinear regression models under scale mixtures of skew-normal distributions. This novel class of models provides a useful generalization of the symmetrical nonlinear regression models since the error distributions cover both skewness and heavy-tailed distributions such as the skew-t, skew-slash and the skew-contaminated normal distributions. The main advantage of these class of distributions is that they have a nice hierarchical representation that allows the implementation of Markov chain Monte Carlo (MCMC) methods to simulate samples from the joint posterior distribution. In order to examine the robust aspects of this flexible class, against outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. Further, some discussions on the model selection criteria are given. The newly developed procedures are illustrated considering two simulations study, and a real data previously analyzed under normal and skew-normal nonlinear regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this paper is to develop a Bayesian approach for log-Birnbaum-Saunders Student-t regression models under right-censored survival data. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the considered model. In order to attenuate the influence of the outlying observations on the parameter estimates, we present in this paper Birnbaum-Saunders models in which a Student-t distribution is assumed to explain the cumulative damage. Also, some discussions on the model selection to compare the fitted models are given and case deletion influence diagnostics are developed for the joint posterior distribution based on the Kullback-Leibler divergence. The developed procedures are illustrated with a real data set. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Influence diagnostics methods are extended in this article to the Grubbs model when the unknown quantity x (latent variable) follows a skew-normal distribution. Diagnostic measures are derived from the case-deletion approach and the local influence approach under several perturbation schemes. The observed information matrix to the postulated model and Delta matrices to the corresponding perturbed models are derived. Results obtained for one real data set are reported, illustrating the usefulness of the proposed methodology.
Resumo:
An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. This novel class of models provides a useful generalization of the heteroscedastic symmetrical nonlinear regression models (Cysneiros et al., 2010), since the random term distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as skew-t, skew-slash, skew-contaminated normal, among others. A simple EM-type algorithm for iteratively computing maximum likelihood estimates of the parameters is presented and the observed information matrix is derived analytically. In order to examine the performance of the proposed methods, some simulation studies are presented to show the robust aspect of this flexible class against outlying and influential observations and that the maximum likelihood estimates based on the EM-type algorithm do provide good asymptotic properties. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. Finally, an illustration of the methodology is given considering a data set previously analyzed under the homoscedastic skew-t nonlinear regression model. (C) 2012 Elsevier B.V. All rights reserved.
Project diagnostics : assessing the condition of projects and identifying poor health combing forces
Resumo:
In many cases, construction projects do not achieve the objectives that the project participants set for them. If participants could better understand how their project is performing overall, at various stages of its delivery, then the opportunities to achieve project success would almost certainly be greater. This paper documents a method of assessing the status of a project, at a point in its design or construction phase, or after completion. The status is assessed in terms of up to seven (7) key success factors. Any evidence of less than adequate performance in these performance areas is scrutinised to seek out the root causes of why this situation is happening. Using these identified root causes of under performance, general suggestions can then be made as to how to return the project to good health. A software package that assists in assessing the status of the project has been developed. The package is currently being calibrated before commercial release.
Resumo:
Project Diagnostics is a tool for construction industry stakeholders wishing to improve project delivery and outcomes. This software identifies areas of poor project health, then establishes probable root causes and provides suggested remedial measures. Its focus is to act as an advanced warning system for construction projects that are failing to meet predetermined objectives based on the critical success factors (CSFs) of cost, time, quality, safety, relationships, environment and stakeholder value.
Resumo:
Dr. Young-Ki Paik directs the Yonsei Proteome Research Center in Seoul, Korea and was elected as the President of the Human Proteome Organization (HUPO) in 2009. In the December 2009 issue of the Current Pharmacogenomics and Personalized Medicine (CPPM), Dr. Paik explains the new field of pharmacoproteomics and the approaching wave of “proteomics diagnostics” in relation to personalized medicine, HUPO’s role in advancing proteomics technology applications, the HUPO Proteomics Standards Initiative, and the future impact of proteomics on medicine, science, and society. Additionally, he comments that (1) there is a need for launching a Gene-Centric Human Proteome Project (GCHPP) through which all representative proteins encoded by the genes can be identified and quantified in a specific cell and tissue and, (2) that the innovation frameworks within the diagnostics industry hitherto borrowed from the genetics age may require reevaluation in the case of proteomics, in order to facilitate the uptake of pharmacoproteomics innovations. He stresses the importance of biological/clinical plausibility driving the evolution of biotechnologies such as proteomics,instead of an isolated singular focus on the technology per se. Dr. Paik earned his Ph.D. in biochemistry from the University of Missouri-Columbia and carried out postdoctoral work at the Gladstone Foundation Laboratories of Cardiovascular Disease, University of California at San Francisco. In 2005, his research team at Yonsei University first identified and characterized the chemical structure of C. elegans dauer pheromone (daumone) which controls the aging process of this nematode. He is interviewed by a multidisciplinary team specializing in knowledge translation, technology regulation, health systems governance, and innovation analysis.
Resumo:
This research is aimed at addressing problems in the field of asset management relating to risk analysis and decision making based on data from a Supervisory Control and Data Acquisition (SCADA) system. It is apparent that determining risk likelihood in risk analysis is difficult, especially when historical information is unreliable. This relates to a problem in SCADA data analysis because of nested data. A further problem is in providing beneficial information from a SCADA system to a managerial level information system (e.g. Enterprise Resource Planning/ERP). A Hierarchical Model is developed to address the problems. The model is composed of three different Analyses: Hierarchical Analysis, Failure Mode and Effect Analysis, and Interdependence Analysis. The significant contributions from the model include: (a) a new risk analysis model, namely an Interdependence Risk Analysis Model which does not rely on the existence of historical information because it utilises Interdependence Relationships to determine the risk likelihood, (b) improvement of the SCADA data analysis problem by addressing the nested data problem through the Hierarchical Analysis, and (c) presentation of a framework to provide beneficial information from SCADA systems to ERP systems. The case study of a Water Treatment Plant is utilised for model validation.
Resumo:
Opiine wasps (Hymenoptera: Braconidae: Opiinae) are parasitoids of dacine fruit flies (Diptera: Tephritidae: Dacinae), the primary horticultural pests of Australia and the South Pacific. Effective use of opiines for biological control of fruit flies is limited by poor taxonomy and identification difficulties. To overcome these problems, this thesis had two aims: (i) to carry out traditional taxonomic research on the fruit fly infesting opine braconids of Australia and the South Pacific; and (ii) to transfer the results of the taxonomic research into user friendly diagnostic tools. Curated wasp material was borrowed from all major Australian museum collections holding specimens. This was supplemented by a large body of material gathered as part of a major fruit fly project in Papua New Guinea: nearly 4000 specimens were examined and identified. Each wasp species was illustrated using traditional scientific drawings, full colour photomicroscopy and scanning electron microscopy. An electronic identification key was developed using Lucid software and diagnostic images were loaded on the web-based Pest and Diseases Image Library (PaDIL). A taxonomic synopsis and distribution and host records for each of the 15 species of dacine-parasitising opiine braconids found in the South Pacific is presented. Biosteres illusorius Fischer (1971) was formally transferred to the genus Fopius and a new species, Fopius ferrari Carmichael and Wharton (2005), was described. Other species dealt with were Diachasmimorpha hageni (Fullaway, 1952), D. kraussii (Fullaway, 1951), D. longicaudata (Ashmead, 1905), D. tryoni (Cameron, 1911), Fopius arisanus (Sonan, 1932), F. deeralensis (Fullaway, 1950), F. schlingeri Wharton (1999), Opius froggatti Fullaway (195), Psyttalia fijiensis (Fullaway, 1936), P. muesebecki (Fischer, 1963), P. novaguineensis (Szépliget, 1900i) and Utetes perkinsi (Fullaway, 1950). This taxonomic component of the thesis has been formally published in the scientific literature. An interactive diagnostics package (“OpiineID”) was developed, the centre of which is a Lucid based multi-access key. Because the diagnostics package is computer based, without the space limitations of the journal publication, there is no pictorial limit in OpiineID and so it is comprehensively illustrated with SEM photographs, full colour photographs, line drawings and fully rendered illustrations. The identification key is only one small component of OpiineID and the key is supported by fact sheets with morphological descriptions, host associations, geographical information and images. Each species contained within the OpiineID package has also been uploaded onto the PaDIL website (www.padil.gov.au). Because the identification of fruit fly parasitoids is largely of concern to fruit fly workers, rather than braconid specialists, this thesis deals directly with an area of growing importance to many areas of pure and applied biology; the nexus between taxonomy and diagnostics. The Discussion chapter focuses on this area, particularly the opportunities offered by new communication and information tools as new ways delivering the outputs of taxonomic science.
Resumo:
The topic of fault detection and diagnostics (FDD) is studied from the perspective of proactive testing. Unlike most research focus in the diagnosis area in which system outputs are analyzed for diagnosis purposes, in this paper the focus is on the other side of the problem: manipulating system inputs for better diagnosis reasoning. In other words, the question of how diagnostic mechanisms can direct system inputs for better diagnosis analysis is addressed here. It is shown how the problem can be formulated as decision making problem coupled with a Bayesian Network based diagnostic mechanism. The developed mechanism is applied to the problem of supervised testing in HVAC systems.
Resumo:
A diagnostic method based on Bayesian Networks (probabilistic graphical models) is presented. Unlike conventional diagnostic approaches, in this method instead of focusing on system residuals at one or a few operating points, diagnosis is done by analyzing system behavior patterns over a window of operation. It is shown how this approach can loosen the dependency of diagnostic methods on precise system modeling while maintaining the desired characteristics of fault detection and diagnosis (FDD) tools (fault isolation, robustness, adaptability, and scalability) at a satisfactory level. As an example, the method is applied to fault diagnosis in HVAC systems, an area with considerable modeling and sensor network constraints.