964 resultados para D. order-disorder effects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periodic first-principles calculations based on density functional theory at the B3LYP level has been carried out to investigate the photoluminescence (PL) emission of BaZrO(3) assembled nanoparticles at room temperature. The defect created in the nanocrystals and their resultant electronic features lead to a diversification of electronic recombination within the BaZrO(3) band gap. Its optical phenomena are discussed in the light of photoluminescence emission at the green-yellow region around 570 nm. The theoretical model for displaced atoms and/or angular changes leads to the breaking of the local symmetry, which is based on the refined structure provided by Rietveld methodology. For each situation a band structure, charge mapping, and density of states were built and analyzed. X-ray diffraction (XRD) patterns, UV-vis measurements, and field emission scanning electron microscopy (FE-SEM) images are essential for a full evaluation of the crystal structure and morphology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel method to calculate the electronic Density of States (DOS) of a two dimensional disordered binary alloy. The method is highly reliable and numerically efficient, and Short Range Order (SRO) correlations can be included with no extra computational cost. The approach devised rests on one dimensional calculations and is applied to very long stripes of finite width, the bulk regime being achieved with a relatively small number of chains in the disordered case. Our approach is exact for the pure case and predicts the correct DOS structure in important limits, such as the segregated, random, and ordered alloy regimes. We also suggest important extensions of the present work. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of polydispersity on an AB diblock copolymer melt is investigated using latticebased Monte Carlo simulations. We consider melts of symmetric composition, where the B blocks are monodisperse and the A blocks are polydisperse with a Schultz-Zimm distribution. In agreement with experiment and self-consistent field theory (SCFT), we find that polydispersity causes a significant increase in domain size. It also induces a transition from flat to curved interfaces, with the polydisperse blocks residing on the inside of the interfacial curvature. Most importantly, the simulations show a relatively small shift in the order-disorder transition (ODT) in agreement with experiment, whereas SCFT incorrectly predicts a sizable shift towards higher temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bell-Lavis model for liquid water is investigated through numerical simulations. The lattice-gas model on a triangular lattice presents orientational states and is known to present a highly bonded low density phase and a loosely bonded high density phase. We show that the model liquid-liquid transition is continuous, in contradiction with mean-field results on the Husimi cactus and from the cluster variational method. We define an order parameter which allows interpretation of the transition as an order-disorder transition of the bond network. Our results indicate that the order-disorder transition is in the Ising universality class. Previous proposal of an Ehrenfest second order transition is discarded. A detailed investigation of anomalous properties has also been undertaken. The line of density maxima in the HDL phase is stabilized by fluctuations, absent in the mean-field solution. (C) 2009 American Institute of Physics. [doi:10.1063/1.3253297]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A photoluminescence (PL) study of the individual electron states localized in a random potential is performed in artificially disordered superlattices embedded in a wide parabolic well. The valence band bowing of the parabolic potential provides a variation of the emission energies which splits the optical transitions corresponding to different wells within the random potential. The blueshift of the PL lines emitted by individual random wells, observed with increasing disorder strength, is demonstrated. The variation of temperature and magnetic field allowed for the behavior of the electrons localized in individual wells of the random potential to be distinguished.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of X-ray diffraction, electrical resistivity, and magnetization are reported across the Jahn-Teller phase transition in LaMnO(3). Using a thermodynamic equation, we obtained the pressure derivative of the critical temperature (T(JT)), dT(JT)/dP = -28.3 K GPa(-1). This approach also reveals that 5.7(3)J(mol K)(-1) comes from the volume change and 0.8(2)J(mol K)(-1) from the magnetic exchange interaction change across the phase transition. Around T(JT), a robust increase in the electrical conductivity takes place and the electronic entropy change, which is assumed to be negligible for the majority of electronic systems, was found to be 1.8(3)J(mol K)(-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intense violet-blue photoluminescence (PL) emission at room temperature was verified in BaZrO3 (BZO) powders with structural order-disorder. Ab-initio calculations, ultraviolet-visible absorption spectroscopy and PL were performed. Theoretical results showed that the local disorder in the network-formed Zr clusters present an important role in the formation of hole-electron pair. The experimental data and theoretical results are in agreement, indicating that the PL emission in BZO powders can be related to the structural order-disorder degree in the lattice. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Global Positioning System (GPS) transmits signals in two frequencies. It allows the correction of the first order ionospheric effect by using the ionosphere free combination. However, the second and third order ionospheric effects, which combined may cause errors of the order of centimeters in the GPS measurements, still remain. In this paper the second and third order ionospheric effects, which were taken into account in the GPS data processing in the Brazilian region, were investigated. The corrected and not corrected GPS data from these effects were processed in the relative and precise point positioning (PPP) approaches, respectively, using Bernese V5.0 software and the PPP software (GPSPPP) from NRCAN (Natural Resources Canada). The second and third order corrections were applied in the GPS data using an in-house software that is capable of reading a RINEX file and applying the corrections to the GPS observables, creating a corrected RINEX file. For the relative processing case, a Brazilian network with long baselines was processed in a daily solution considering a period of approximately one year. For the PPP case, the processing was accomplished using data collected by the IGS FORT station considering the period from 2001 to 2006 and a seasonal analysis was carried out, showing a semi-annual and an annual variation in the vertical component. In addition, a geographical variation analysis in the PPP for the Brazilian region has confirmed that the equatorial regions are more affected by the second and third order ionospheric effects than other regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After removal of the Selective Availability in 2000, the ionosphere became the dominant error source for Global Navigation Satellite Systems (GNSS), especially for the high-accuracy (cm-mm) demanding applications like the Precise Point Positioning (PPP) and Real Time Kinematic (RTK) positioning.The common practice of eliminating the ionospheric error, e. g. by the ionosphere free (IF) observable, which is a linear combination of observables on two frequencies such as GPS L1 and L2, accounts for about 99% of the total ionospheric effect, known as the first order ionospheric effect (Ion1). The remaining 1% residual range errors (RREs) in the IF observable are due to the higher - second and third, order ionospheric effects, Ion2 and Ion3, respectively. Both terms are related with the electron content along the signal path; moreover Ion2 term is associated with the influence of the geomagnetic field on the ionospheric refractive index and Ion3 with the ray bending effect of the ionosphere, which can cause significant deviation in the ray trajectory (due to strong electron density gradients in the ionosphere) such that the error contribution of Ion3 can exceed that of Ion2 (Kim and Tinin, 2007).The higher order error terms do not cancel out in the (first order) ionospherically corrected observable and as such, when not accounted for, they can degrade the accuracy of GNSS positioning, depending on the level of the solar activity and geomagnetic and ionospheric conditions (Hoque and Jakowski, 2007). Simulation results from early 1990s show that Ion2 and Ion3 would contribute to the ionospheric error budget by less than 1% of the Ion1 term at GPS frequencies (Datta-Barua et al., 2008). Although the IF observable may provide sufficient accuracy for most GNSS applications, Ion2 and Ion3 need to be considered for higher accuracy demanding applications especially at times of higher solar activity.This paper investigates the higher order ionospheric effects (Ion2 and Ion3, however excluding the ray bending effects associated with Ion3) in the European region in the GNSS positioning considering the precise point positioning (PPP) method. For this purpose observations from four European stations were considered. These observations were taken in four time intervals corresponding to various geophysical conditions: the active and quiet periods of the solar cycle, 2001 and 2006, respectively, excluding the effects of disturbances in the geomagnetic field (i.e. geomagnetic storms), as well as the years of 2001 and 2003, this time including the impact of geomagnetic disturbances. The program RINEX_HO (Marques et al., 2011) was used to calculate the magnitudes of Ion2 and Ion3 on the range measurements as well as the total electron content (TEC) observed on each receiver-satellite link. The program also corrects the GPS observation files for Ion2 and Ion3; thereafter it is possible to perform PPP with both the original and corrected GPS observation files to analyze the impact of the higher order ionospheric error terms excluding the ray bending effect which may become significant especially at low elevation angles (Ioannides and Strangeways, 2002) on the estimated station coordinates.