993 resultados para Cytometric analysis
Resumo:
Low efficiency of transfection is often the limiting factor for acquiring conclusive data in reporter assays. It is especially difficult to efficiently transfect and characterize promoters in primary human cells. To overcome this problem we have developed a system in which reporter gene expression is quantified by flow cytometry. In this system, green fluorescent protein (GFP) reporter constructs are co-transfected with a reference plasmid that codes for the mouse cell surface antigen Thy-1.1 and serves to determine transfection efficiency. Comparison of mean GFP expression of the total transfected cell population with the activity of an analogous luciferase reporter showed that the sensitivity of the two reporter systems is similar. However, because GFP expression can be analyzed at the single-cell level and in the same cells the expression of the reference plasmid can be monitored by two-color fluorescence, the GFP reporter system is in fact more sensitive, particularly in cells which can only be transfected with a low efficiency.
Resumo:
Cardiac-resident stem/progenitor cells have been identified based on expression of stem cell-associated antigens. However, no single surface marker allows to identify a definite cardiac stem/progenitor cell entity. Hence, functional stem cell markers have been extensively searched for. In homeostatic systems, stem cells divide infrequently and therefore retain DNA labels such as 5-bromo-2'-deoxyuridine, which are diluted with division. We used this method to analyze long-term label-retaining cells in the mouse heart after 14 days of 5-bromo-2'-deoxyuridine administration. Labeled cells were detected using immunohistochemical and flow-cytometric methods after varying chasing periods up to 12 months. Using mathematical models, the observed label dilution could consistently be described in the context of a 2-population model, whereby a population of rapidly dividing cells accounted for an accelerated early decline, and a population of slowly dividing cells accounted for decelerated dilution on longer time scales. Label-retaining cells were preferentially localized in the atria and apical region and stained negative for markers of the major cell lineages present in the heart. Most cells with long-term label-retention expressed stem cell antigen-1 (Sca-1). Sca-1(+)CD31(-) cells formed cell aggregates in culture, out of which lineage-negative (Lin(-))Sca-1(+)CD31(-) cells emerged, which could be cultured for many passages. These cells formed cardiospheres and showed differentiation potential into mesenchymal cell lineages. When cultured in cardiomyogenic differentiation medium, they expressed cardiac-specific genes. In conclusion, recognition of slow-cycling cells provides functional evidence of stem/progenitor cells in the heart. Lin(-)Sca-1(+)CD31(-) cardiac-derived progenitors have a potential for differentiation into cardiomyogenic and mesenchymal cell lineages.
Resumo:
Background: A clinically relevant bleeding diathesis is a frequent diagnostic challenge, which sometimes remains unexplained despite extensive investigations. The aim of our work was to evaluate the diagnostic utility of functional platelet testing by flow cytometry in this context. Methods: In case of negative results after standard laboratory work-up, flow cytometric analysis (FCA) of platelet function was done. We performed analysis of surface glycoproteins (GP) Ibα, IIb, IIIa; P-selectin expression and PAC-1 binding after graded doses of ADP, collagen and thrombin; content/secretion of dense granules; ability to generate procoagulant platelets. Results: Out of 437 patients investigated with standard tests between January 2007 and December 2011, we identified 67 (15.3%) with high bleeding scores and non-diagnostic standard laboratory work-up including platelet aggregation studies. Among these patients FCA revealed some potentially causative platelet defects: decreased dense-granule content/secretion (n=13); decreased alpha-granule secretion induced by ADP (n=10), convulxin (n=4) or thrombin (n=3); decreased fibrinogen-receptor activation induced by ADP (n=11), convulxin (n=11) or thrombin (n=8); decreased generation of COAT-platelets, i.e. highly procoagulant platelets induced by simultaneous activation with collagen and thrombin (n=16). Conclusion: Our work confirms that storage pool defects are frequent in patients with a bleeding diathesis and normal coagulation and platelet aggregations studies. Additionally, flow cytometric analysis is able to identify discrete platelet activation defects. In particular, we show for the first time that a relevant proportion of these patients has an isolated impaired ability to generate COAT-platelets - a conceptually new defect in platelet procoagulant activity, that is missed by conventional laboratory work-up. © 2014 Clinical Cytometry Society.
Resumo:
C-reactive protein (CRP), a normally occurring human plasma protein may become elevated as much as 1,000 fold during disease states involving acute inflammation or tissue damage. Through its binding to phosphorylcholine in the presence of calcium, CRP has been shown to potentiate the activation of complement, stimulate phagocytosis and opsonize certain microorganisms. Utilizing a flow cytometric functional ligand binding assay I have demonstrated that a monocyte population in human peripheral blood and specific human-derived myelomonocytic cell lines reproducibly bind an evolutionarily conserved conformational pentraxin epitope on human CRP through a mechanism that does not involve its ligand, phosphorylcholine. ^ A variety of cell lines at different stages of differentiation were examined. The monocytic cell line, THP-1, bound the most CRP followed by U937 and KG-1a cells. The HL-60 cell line was induced towards either the granulocyte or monocyte pathway with DMSO or PMA, respectively. Untreated HL-60 cells or DMSO-treated cells did not bind CRP while cells treated with PMA showed increased binding of CRP, similar to U-937 cells. T cell and B-cell derived lines were negative. ^ Inhibition studies with Limulin and human SAP demonstrated that the binding site is a conserved pentraxin epitope. The calcium requirement necessary for binding to occur indicated that the cells recognize a conformational form of CRP. Phosphorylcholine did not inhibit the reaction therefore the possibility that CRP had bound to damaged membranes with exposed PC sites was discounted. ^ A study of 81 normal donors using flow cytometry demonstrated that a majority of peripheral blood monocytes (67.9 ± 1.3, mean ± sem) bound CRP. The percentage of binding was normally distributed and not affected by gender, age or ethnicity. Whole blood obtained from donors representing a variety of disease states showed a significant reduction in the level of CRP bound by monocytes in those donors classified with infection, inflammation or cancer. This reduction in monocyte populations binding CRP did not correlate with the concentration of plasma CRP. ^ The ability of monocytes to specifically bind CRP combined with the binding reactivity of the protein itself to a variety of phosphorylcholine containing substances may represent an important bridge between innate and adaptive immunity. ^
Resumo:
To examine whether nucleolar organizer regions detected by argyrophilia (Ag-NOR counts) can be used as a prognostic indicator in phyllodes tumors of the breast, and to compare its usefulness with that of DNA flow cytometric analysis, 28 cases of breast phyllodes tumors (including 15 benign, two borderline and 11 malignant tumors) were subjected to Ag-NOR staining and counting as well as DNA flow cytometric analysis. S-phase fraction and DNA ploidy analysis showed useful trends for improving outcome predictions in malignant phyllodes tumors. However, high Ag-NOR counts were significant in predicting survival status (P = 0.013) and reached near statistical significance in predicting survival times (P = 0.07). In predicting survival status, results for Ag-NOR counts were significantly better than those for ploidy analysis (P = 0.02) and S-phase fraction (P < 0.01). Only S-phase fraction was significantly predictive of survival times (P = 0.025). It is concluded that Ag-NOR counts and DNA flow cytometric analysis, easily performed using paraffin sections, give information that can improve predictions made by histopathological classification. Ag-NOR counts are significant in predicting survival in the presence of histopathological features of malignancy.
Resumo:
Monocytes are central mediators in the development of atherosclerotic plaques. They circulate in blood and eventually migrate into tissue including the vessel wall where they give rise to macrophages and dendritic cells. The existence of monocyte subsets with distinct roles in homeostasis and inflammation suggests specialization of function. These subsets are identified based on expression of the CD14 and CD16 markers. Routinely applicable protocols remain elusive, however. Here, we present an optimized four-color flow cytometry protocol for analysis of human blood monocyte subsets using a specific PE-Cy5-conjugated monoclonal antibody (mAb) to HLA-DR, a PE-Cy7-conjugated mAb to CD14, a FITC-conjugated mAb to CD16, and PE-conjugated mAbs to additional markers relevant to monocyte function. Classical CD14(+)CD16(-) monocytes (here termed "Mo1" subset) expressed high CCR2, CD36, CD64, and CD62L, but low CX(3)CR1, whereas "nonclassical" CD14(lo)CD16(+) monocytes (Mo3) essentially showed the inverse expression pattern. CD14(+)CD16(+) monocytes (Mo2) expressed high HLA-DR, CD36, and CD64. In patients with stable coronary artery disease (n = 13), classical monocytes were decreased, whereas "nonclassical" monocytes were increased 90% compared with healthy subjects with angiographically normal coronary arteries (n = 14). Classical monocytes from CAD patients expressed higher CX(3)CR1 and CCR2 than controls. Thus, stable CAD is associated with expansion of the nonclassical monocyte subset and increased expression of inflammatory markers on monocytes. Flow cytometric analysis of monocyte subsets and marker expression may provide valuable information on vascular inflammation. This may translate into the identification of monocyte subsets as selective therapeutic targets, thus avoiding adverse events associated with indiscriminate monocyte inhibition.
Resumo:
Immune dysregulation, Polyendocrinopathy, Enteropathy X-linked (IPEX) syndrome is a unique example of primary immunodeficiency characterized by autoimmune manifestations due to defective regulatory T (Treg) cells, in the presence of FOXP3 mutations. However, autoimmune symptoms phenotypically resembling IPEX often occur in the absence of detectable FOXP3 mutations. The cause of this "IPEX-like" syndrome presently remains unclear. To investigate whether a defect in Treg cells sustains the immunological dysregulation in IPEX-like patients, we measured the amount of peripheral Treg cells within the CD3(+) T cells by analysing demethylation of the Treg cell-Specific-Demethylated-Region (TSDR) in the FOXP3 locus and demethylation of the T cell-Specific-Demethylated-Region (TLSDR) in the CD3 locus, highly specific markers for stable Treg cells and overall T cells, respectively. TSDR demethylation analysis, alone or normalized for the total T cells, showed that the amount of peripheral Treg cells in a cohort of IPEX-like patients was significantly reduced, as compared to both healthy subjects and unrelated disease controls. This reduction could not be displayed by flow cytometric analysis, showing highly variable percentages of FOXP3(+) and CD25(+)FOXP3(+) T cells. These data provide evidence that a quantitative defect of Treg cells could be considered a common biological hallmark of IPEX-like syndrome. Since Treg cell suppressive function was not impaired, we propose that this reduction per se could sustain autoimmunity.
Resumo:
The human tyrosinase gene codes for two distinct antigens that are recognized by HLA-A*0201-restricted CTLs. For one of them, tyrosinase peptide 368-376, the sequence identified by mass spectrometry in melanoma cell eluates differs from the gene-encoded sequence as a result of posttranslational modification of amino acid residue 370 (asparagine to aspartic acid). Here, we used fluorescent tetrameric complexes ("tetramers") of HLA-A*0201 and tyrosinase peptide 368-376 (YMDGTMSQV) to characterize the CD8+ T-cell response to this antigen in lymphoid cell populations from HLA-A2 melanoma patients. Taking advantage of the presence of significant numbers of tetramer-positive CD8+ T cells in tumor-infiltrated lymph node cells from a melanoma patient, we derived polyclonal and monoclonal tyrosinase peptide 368-376-specific CTLs by tetramer-guided flow cytometric sorting. These CTLs efficiently and specifically lysed HLA-A*0201- and tyrosinase-positive melanoma cells. As assessed with tyrosinase peptide variants, the fine antigen specificity of the CTLs was quite diverse at the clonal level. Flow cytometric analysis of PBMCs stained with tetramers showed that tyrosinase peptide 368-376-specific CD8+ T cells were hardly detectable in peripheral blood of melanoma patients. However, significant numbers of such cells were detected after short-term stimulation of CD8+ lymphocytes with tyrosinase peptide 368-376 in 6 of 10 HLA-A2 melanoma patients. Taken together, these findings emphasize the significant contribution of the natural tyrosinase peptide 368-376 to the antigenic specificities recognized by the tumor-reactive CTLs that may develop in HLA-A2 melanoma patients.
Resumo:
RÉSUMÉ : Elucider les bases moléculaires et cellulaires du fonctionnement des cellules souches s'avère crucial dans la compréhension de l'organisation cellulaire au sein des tissus et des organes ainsi que pour le développement de nouvelles stratégies thérapeutiques en médecine régénérative et en oncologie. Les cellules souches adultes les mieux connues sont celles responsables de l'hématopoïèse, les cellules souches hématopoïétiques (CSH). Durant ces dernières années, la recherche a porté une attention particulière à l'isolation prospective de CSH dérivées de la moelle osseuse de souris en utilisant des marqueurs de surface cellulaire ainsi que des propriétés fonctionnelles alléguées. Par la suite, la capacité fonctionnelle des CSH a été vérifiée classiquement par leur transplantation intraveineuse dans des souris réceptrices conditionnées et par l'analyse de leur aptitude à reconstituer le système hématopoïétique à long terme. Des études récentes suggèrent que la transplantation des cellules directement dans la moelle osseuse pourrait non seulement aboutir à une prise de greffe plus rapide et plus efficace, mais pourrait même aider à l'identification de cellules qui ont certes des propriétés intrinsèques de CSH, mais qui n'ont pas la capacité de trouver leur niche au sein de la moelle osseuse et ont donc échoué dans les analyses classiques de reconstitution. Dans cette étude, nous comparons à deux niveaux la fonction de différents sous-groupes de cellules souches de la moelle osseuse, définis par leur phénotype de surface cellulaire. Premièrement, nous étudions leur capacité à reconstituer des souris létalement irradiées après injection soit intraveineuse soit intrafémorale. Deuxièmement, par analyse cytométrique de flux à 8 couleurs, nous comparons leur activité relative de « side population » (SP) par exclusion du colorant fluorescent Hoechst 33342. Nos résultats préliminaires renforcent en effet l'idée que la transplantation intrafémorale aboutit à une greffe plus rapide et plus efficace. Par contre, en utilisant cette approche, nous n'arrivons pas à identifier des cellules capables de prendre greffe spécifiquement quand elles sont injectées en intrafémorale. Finalement, bien qu'une confirmation in vivo soit encore nécessaire, nous suggérons sur la base de nos analyses cytométriques de flux, que les cellules SP Sca1t~és éie~~ CD48t~és bas sont très enrichies en CSH. Ceci permettrait l'isolation ex vivo de CSH de la moelle osseuse de souris par une stratégie à la fois nouvelle et simple. SUMMARY : Elucidating the molecular and cellular bases of stem cell function is crucial for the understanding of cellular organisation within tissues and organs as well as for the development of new therapeutic strategies in regenerative medicine and oncology. The best-known adult stem cells are those responsible for haematopoiesis, the haematopoietic stem cells (HSCs). In recent years, much effort has been put into the prospective isolation of mouse bone marrow (BM)-derived HSCs using cell-surface markers and alleged functional properties. Upon isolation, the functional capacity of putative HSCs has been classically assessed by intravenous transplantation into conditioned recipient mice and analysis of their ability to reconstitute the haematopoietic system at long-term. It has recently been suggested that transplanting the cells directly into the BM might not only result in more rapid and more effective engraftment, but even help to identify cells that have intrinsic HSC properties but lack the ability to home to their BM niche and have thus failed to succeed in classical reconstitution assays. In this study, we compare the function of different BM cell subsets, as defined by their cell surface phenotype, on two levels. Firstly, we assess their ability to reconstitute lethally irradiated mice, when injected either intravenously or intrafemorally. Secondly, using 8-colour flow cytometric analysis, we compare their relative side population (SP) activity by exclusion of the fluorescent dye Hoechst 33342. Our preliminary results indeed reinforce the idea that intrafemoral transplantation results in faster and more effective engraftment, however, using this approach, we are unable to identify cells that are capable of engrafting specifically when injected intrafemorally. Finally, although in vivo confirmation is still required, we propose, based on the results of our flow cytometric analyses, that SP Scat Very h'9h CD48Very'°W cells should be highly enriched for HSCs. This would allow for a simple new strategy for the isolation of mouse BM HSCs ex vivo.
Resumo:
Strong platelet activation results in a redistribution of negatively charged phospholipids from the cytosolic to the outer leaflet of the cellular membrane. Annexin V has a high affinity to negatively charged phospholipids and can be used to identify procoagulant platelets. Formaldehyde fixation can cause factitious Annexin V binding. Our aim was to evaluate a method for fixing platelets avoiding additional Annexin V binding. We induced expression of negatively charged phospholipids on the surface of a fraction of platelets by combined activation with convulxin and thrombin in the presence of Annexin V-fluorescein isothiocyanate and calcium. Aliquots of resting and activated platelets were fixed with a low concentration, calcium-free formaldehyde solution. Both native platelets and fixed platelets were analyzed by flow cytometry immediately and after a 24-h storage at 4°C. We observed that the percentage of Annexin V positive resting platelets ranged from 1.5 to 9.3% for the native samples and from 0.4 to 12.8% for the fixed samples (P=0.706, paired t-test). The amount of Annexin V positive convulxin/thrombin activated platelets varied from 12.9 to 35.4% without fixation and from 15.3 to 36.3% after formalin fixation (P=0.450). After a 24-h storage at 4°C, Annexin V positive platelets significantly increased both in the resting and in the convulxin/thrombin activated samples of native platelets (both P<0.001), while results for formalin fixed platelets did not differ from baseline values (P=0.318 for resting fixed platelets; P=0.673 for activated fixed platelets). We conclude that platelet fixation with a low concentration, calcium-free formaldehyde solution does not alter the proportion of Annexin V positive platelets. This method can be used to investigate properties of procoagulant platelets by multicolor flow-cytometric analysis requiring fixation steps.
Resumo:
The aim of this work was to characterize the effects of partial inhibition of respiratory complex I by rotenone on H2O2 production by isolated rat brain mitochondria in different respiratory states. Flow cytometric analysis of membrane potential in isolated mitochondria indicated that rotenone leads to uniform respiratory inhibition when added to a suspension of mitochondria. When mitochondria were incubated in the presence of a low concentration of rotenone (10 nm) and NADH-linked substrates, oxygen consumption was reduced from 45.9 ± 1.0 to 26.4 ± 2.6 nmol O2 mg(-1) min(-1) and from 7.8 ± 0.3 to 6.3 ± 0.3 nmol O2 mg(-1) min(-1) in respiratory states 3 (ADP-stimulated respiration) and 4 (resting respiration), respectively. Under these conditions, mitochondrial H2O2 production was stimulated from 12.2 ± 1.1 to 21.0 ± 1.2 pmol H2O2 mg(-1) min(-1) and 56.5 ± 4.7 to 95.0 ± 11.1 pmol H2O2 mg(-1) min(-1) in respiratory states 3 and 4, respectively. Similar results were observed when comparing mitochondrial preparations enriched with synaptic or nonsynaptic mitochondria or when 1-methyl-4-phenylpyridinium ion (MPP(+)) was used as a respiratory complex I inhibitor. Rotenone-stimulated H2O2 production in respiratory states 3 and 4 was associated with a high reduction state of endogenous nicotinamide nucleotides. In succinate-supported mitochondrial respiration, where most of the mitochondrial H2O2 production relies on electron backflow from complex II to complex I, low rotenone concentrations inhibited H2O2 production. Rotenone had no effect on mitochondrial elimination of micromolar concentrations of H2O2. The present results support the conclusion that partial complex I inhibition may result in mitochondrial energy crisis and oxidative stress, the former being predominant under oxidative phosphorylation and the latter under resting respiration conditions.
Resumo:
Background: The Trypanosoma cruzi genome was sequenced from a hybrid strain (CL Brener). However, high allelic variation and the repetitive nature of the genome have prevented the complete linear sequence of chromosomes being determined. Determining the full complement of chromosomes and establishing syntenic groups will be important in defining the structure of T. cruzi chromosomes. A large amount of information is now available for T. cruzi and Trypanosoma brucei, providing the opportunity to compare and describe the overall patterns of chromosomal evolution in these parasites. Methodology/Principal Findings: The genome sizes, repetitive DNA contents, and the numbers and sizes of chromosomes of nine strains of T. cruzi from four lineages (TcI, TcII, TcV and TcVI) were determined. The genome of the TcI group was statistically smaller than other lineages, with the exception of the TcI isolate Tc1161 (Jose-IMT). Satellite DNA content was correlated with genome size for all isolates, but this was not accompanied by simultaneous amplification of retrotransposons. Regardless of chromosomal polymorphism, large syntenic groups are conserved among T. cruzi lineages. Duplicated chromosome-sized regions were identified and could be retained as paralogous loci, increasing the dosage of several genes. By comparing T. cruzi and T. brucei chromosomes, homologous chromosomal regions in T. brucei were identified. Chromosomes Tb9 and Tb11 of T. brucei share regions of syntenic homology with three and six T. cruzi chromosomal bands, respectively. Conclusions: Despite genome size variation and karyotype polymorphism, T. cruzi lineages exhibit conservation of chromosome structure. Several syntenic groups are conserved among all isolates analyzed in this study. The syntenic regions are larger than expected if rearrangements occur randomly, suggesting that they are conserved owing to positive selection. Mapping of the syntenic regions on T. cruzi chromosomal bands provides evidence for the occurrence of fusion and split events involving T. brucei and T. cruzi chromosomes.
Resumo:
Cultured melanoma cells release soluble factors that influence immune responses. Screening of a cDNA library with anti-sera from a melanoma patient identified an immunoreactive plaque, which encoded heavy-chain ferritin (H-ferritin), Previous studies have drawn attention to the immunosuppressive effects of this molecule and prompted further studies on its biochemical and functional properties in human melanoma, These studies demonstrated, firstly, that H-ferritin appeared to be secreted by melanoma cells, as shown by immunoprecipitation of a 21.5 kDa band from supernatants. It was also detected in extracts of melanoma cells by Western blotting as 43 and 64 kDa dimers and trimers of the 21.5 kDa fraction. Secondly, flow-cytometric analysis of H- and light-chain ferritin (L-ferritin) expression on melanoma showed a wide variation in L-ferritin expression and consequently of the ratio of H- to L-ferritin expression. Suppression of mitogenic responses of lymphocytes to anti-CD3 showed a correlation with the ratio of H- to L-ferritin in the supernatants and was specific for H-ferritin, as shown by inhibition studies with a monoclonal antibody (MAb) against H-ferritin, Similar results were obtained with H- and L-ferritin from other sources. Suppression of mitogenic responses of lymphocytes to anti-CD3 by H-ferritin was inhibited using a MAb against IL-IO, which suggested that the immunosuppressive effect of H-ferritin was mediated by IL-IO, Assays of cytokine production from anti-CD3-stimulated lymphocytes showed that H-ferritin markedly increased production of IL-10 and IFN-gamma and had only slight effects on IL-2 and IL-4 production, Our results suggest that melanoma cells may be a major source of H-ferritin and that production of the latter may account for some of the immunosuppressive effects of melanoma, (C) 2001 Wiley-Liss. Inc.
Resumo:
Background: Human postnatal stem cells have been identified in periodontal ligaments (PDLs). In this study, the in vitro biologic properties of CD105(+) enriched cell subsets from PDLs harvested from deciduous (DePDL) and permanent (PePDL) teeth are comparatively assessed. Methods: PDL tissue was obtained from 12 teeth (six primary and six permanent) from which CD105(+) CD34(-) CD45(-) cells were isolated by magnetic cell sorting. To identify and quantitatively compare the stem cell markers, DePDL and PePDL cells were assessed for CD166 surface antigen expression by flow cytometry, real-time polymerase chain reaction, and immunostaining for Stro-1 and Oct-4, osteogenic and adipogenic differentiation, and proliferation rate by trypan blue method. Results: Magnetic cell sorting isolated cell populations containing 23.87% (+/- 11.98%) and 11.68% (+/- 6.27%) of CD105(+) expressing cells from PePDL and DePDL, respectively. Flow cytometric analysis demonstrated a higher proportion of CD105(+) cells coexpressing CD166 surface antigen in PePDL, whereas immunostaining and real-time polymerase chain reaction analysis demonstrated that both cell subsets expressed Stro-1 and Oct-4. DePDL-CD105(+) subsets were more proliferative compared to PePDL subsets, and both cell populations showed multipotential capabilities to differentiate in vitro to osteoblast/cementoblast- and adipocyte-like cells. However, a higher expression of adipogenic-related genes was observed in DePDL cells, whereas PePDL-CD105(+) cell subset presented a more homogeneous osteoblast/cementoblast response. Conclusion: These findings demonstrate that highly purified mesenchymal progenitor cell subsets can be obtained from the PDLs of both deciduous and permanent teeth, and further indicate phenotype dissimilarities that may have an impact on their clinical applications. J Periodontol 2010;81:1207-1215.
Resumo:
Oropouche (OROV) is a single-stranded RNA arbovirus of the family Bunyaviridae, genus Orthobunyavirus, which has caused over half a million cases of febrile illness in Brazil in the past 30 years. OROV fever has been registered almost exclusively in the Amazon region, but global warming, deforestation and redistribution of vectors and animal reservoirs increases the risk of Oropouche virus emergence in other areas. OROV causes a cytolytical infection in cultured cells with characteristic cytopathic effect 48 h post-infection. We have studied the mechanisms of apoptosis induced by OROV in HeLa cells and found that OROV causes DNA fragmentation detectable by gel electrophoresis and by flow cytometric analysis of the Sub-G1 population at 36 h post-infection. Mitochondrial release of cytochrome C and activation of caspases 9 and 3 were also detected by western blot analysis. Lack of apoptosis induced by UV-inactivated OROV reveals that virus-receptor binding is not sufficient to induce cell death. Results obtained in cells treated with chloroquine and cycloheximide indicated that viral uncoating and replication are required for apoptosis induction by OROV. Furthermore, treatment of the cells with pan-caspase inhibitor prevented OROV-induced apoptosis without affecting virus progeny production. The results show that OROV infection in vitro causes apoptosis by an intracellular pathway involving mitochondria, and activated by a mechanism dependent on viral replication and protein synthesis. (C) 2010 Elsevier B.V. All rights reserved.