904 resultados para Cylindrospermopsin Mouse
Resumo:
Radiolabelled C-14 cylindrospermopsin (CYN) has been prepared and used to investigate the distribution and excretion of CYN in vivo in male Quackenbush mice. At a dose of 0.2 mg/kg (i.e., approx. median lethal dose) the following mean (SID) urinary and faecal recoveries (cumulative) were obtained, respectively: (0-6 hours, n = 4) 48.2 (29.3)%, 11.9 (21.4)%; (0-12 hours, n = 12) 66.0 (27.1)%, 5.7 (5.6)%; (0-24 hours, n = 12) 68.4 (26.7)%, 8.5 (8.1)%. Mean (SD) recoveries from livers at 6 hours were 20.6 (6.4)% (n = 4), at 48 hours 13.1 (7.7)% (n = 8), and 5-7 days were 2.1 (2.1)% (n = 8). A substantial amount (up to 23%) can be retained in the liver for up to 48 hours with a lesser amount retained in the kidneys. The excretion patterns show substantial interindividual variability between predominantly faecal or urinary excretion, but these patterns are not related in any simple manner to the outcome in terms of toxicity. There is at least one methanol-extractable metabolite as well as a nonmethanol-extractable metabolite in the liver. The methanol-extractable metabolite was not found in the kidney and is more hydrophilic than CYN itself on reverse phase. (C) 2001 by John Wiley & Sons, Inc.
Resumo:
Cylindrospermopsin (CYN) is a hepatotoxin isolated from the blue-green alga Cylindrospermopsis raciborskii. The role of both glutathione (GSH) and the cytochrome P450 enzyme system (P450) in the mechanism of toxicity of CYN has been previously investigated in in vitro systems. We have investigated the role of GSH and P450 in vivo in mice. Mice pre-treated with buthionine sulphoximine and diethyl maleate to deplete hepatic GSH prior to dosing with 0.2 mg/kg CYN showed a seven-day survival rate of 5/13 while the control group rate was 9/14. Dosing mice with 0.2 mg/kg CYN produced a small decrease in hepatic GSH with a characteristic rebound effect at 24 h, The magnitude of this effect is however small and combined with the non-significant difference in survival rates after GSH depletion suggest depletion of GSH by CYN could not be a primary mechanism for CYN toxicity, Conversely, pro-treatment with piperonyl butoxide, a P450 inhibitor, protected mice against CYN toxicity giving a survival rate of 10/10 compared with 4/10 in the control group (p < 0.05 Chi squared) and was protective at doses up to 0.8 mg/kg, suggesting activation of CYN by P450 is of primary importance in the mechanism of action. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A strain of Raphidiopsis (Cyanobacteria) isolated from a fish pond in Wuhan, P. R. China was examined for its taxonomy and production of the alkaloidal hepatotoxins cylindrospermopsin (CYN) and deoxy-cylindrospermopsin (deoxy-CYN). Strain HB1 was identified as R. curvata Fritsch et Rich based on morphological examination of the laboratory culture. HB1 produced mainly deoxy-CYN at a concentration of 1.3 mg(.)g(-1) (dry ut cells) by HPLC and HPLC-MS/MS. CYN was also detected in trace amounts (0.56 mug(.)g(-1)). A mouse bioassay did not show lethal toxicity when tested at doses up to 1500 mg dry weight cells(.)kg(-1) body weight within 96 h, demonstrating that production of primarily deoxy CYN does not lead to significant mouse toxicity by strain BB I. The presence of deoxy-CYN and CYN in R curvata suggests that Raphidiopsis belongs to the Nostocaceae, but this requires confirmation by molecular systematic studies. Production of these cyanotoxins by Raphidiopsis adds another genus, in addition to Cylindrospemopsis, Aphanizomenon, and Umezakia, now known to produce this group of hepatotoxic cyanotoxins. This is also the first report from China of a CYN and deoxy-CYN producing cyanobacterium.
Resumo:
A strain of Cylindrospermopsis (Cyanobacteria) isolated from a fishpond in Thailand was examined for its taxonomy based upon morphology and 16S rRNA gene sequence. It was also examined for production of the hepatotoxic cyanotoxin called cylindrospermopsin (CYN) and deoxycylindrospermopsin (deoxy-CYN). The strain (CY-Thai) was identified as C. raciborskii (Woloszynska) Seenaya and Subba Raju based upon morphological examination which was confirmed by 16S rRNA gene sequences and phylogenetic comparisons based upon its 16S rRNA gene. The alkaloid heptatotoxin CYN was confirmed using mouse bioassay, HPLC and HPLC-MS/MS while deoxy-CYN was confirmed using HPLC-MS/MS. The mouse bioassay gave a minimum lethal dose at 250 mg dry weight cells/kg body weight within 24 h and 125 mg/kg at 72 h, with signs of poisoning the same as in literature reports for CYN. HPLC chromatographic comparison of the CY-Thai toxin with standard CYN gave the same retention time and an absorbance maximum at 262 nm. HPLC-MS/MS confirmed the presence of CYN (M + H 416) and deoxy-CYN (M + H 400). The CYN content in strain CY-Thai was estimated at 1.02 mg/g and approximately 1/10 of this amount for deoxy-CYN. This is the first report from Asia of a CYN, deoxy-CYN producing Cylindrospermopsis raciborskii. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Cylindrospermopsin (CYN), a potent cyanobacterial hepatotoxin produced by Cylindrospermopsis raciborskii and other cyanobacteria, is regularly found in water supplies in many parts of the world, and has been associated with the intoxication of humans and livestock. In this study, Balb/c mice were injected via the intraperitoneal (IP) route with a single dose of 0.2 mg/kg CYN. Animals were sacrificed at 6, 12, 24, 48 and 72 It. DNA was isolated from the mouse livers, and examined for strand breakage by alkaline gel electrophoresis (pH 12). Significant DNA strand breakage was observed in the mouse liver exposed to CYN, suggesting that induction of DNA strand breakage is probably one of the key mechanisms for CYN genotoxicity. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The presence of toxic cyanobacteria in drinking water reservoirs renders the need to develop treatment methods for the 'safe' removal of their associated toxins. Chlorine has been shown to successfully remove a range of cyanotoxins including microcystins, cylindrospermopsin and saxitoxins. Each cyanotoxin requires specific treatment parameters, particularly solution pH and free chlorine residual. However, currently there has not been any investigation into the toxicological effect of solutions treated for the removal of these cyanotoxins by chlorine. Using the P53(def) transgenic mouse model mate and female C57BL/6J hybrid mice were used to investigate potential cancer inducing effects from such oral dosing solutions. Both purified cyanotoxins and toxic cell-free extract cyanobacterial solutions were chlorinated and administered over 90 and 170 days (respectively) in drinking water. No increase in cancer was found in any treatment. The parent cyanotoxins, microcystins, cylindrospermopsin and saxitoxins were readily removed by chlorine. There was no significant increase in the disinfection byproducts trihalomethanes or haloacetic acids, levels found were well below guideline values. Histological examination identified no effect of treatment solutions except male mice treated with chlorinated cylindrospermopsin (as a cell free extract). In this instance 40% of males were found to have fatty vacuolation in their livers, cause unknown. It is recommended that further toxicology be undertaken on chlorinated cyanobacterial solutions, particularly for non-genotoxic carcinogenic compounds, for example the Tg. AC transgenic mouse model. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Cylindrospermopsin (CYN), a potent cyanobacterial hepatotoxin produced by Cylindrospermopsis raciborskii and other cyanobacteria, is regularly found in water supplies in many parts of the world and has been associated with the intoxication of humans and livestock.Water treatment via chlorination can degrade the toxin effectively but result in the production of several byproducts. In this study, male and female Balb/c mice were injected via the intraperitoneal (IP) route with a single dose of 10 mg/kg 5-chlorouracil and 10 mg/kg 5-chloro-6-hydroxymethyluracil; these two compounds are the predicted chlorinated degradation products of CYN.DNA was isolated from the mouse livers and examined for strand breakage by alkaline gel electrophoresis (pH 12). The median molecular length (MML) of the DNA distributed in the gel was determined by estimating the midpoint of the DNA size distribution by densitometry. The toxicity of 5-chlorouracil (as measured by DNA strand breakage) was significantly influenced by time from dosing. There was no significant difference in MML between mice dosed with 5-chloro-6-hydroxymethyluracil and the controls. In another experiment, mice were dosed with 0, 0.1, 1, 10 and 100 mg/kg body weight 5-chlorouracil and 0, 0.1, 1, 10 and 20 mg/kg 5-chloro-6-hydroxymethyluracil via IP injection. The heart, liver, kidney, lung and spleen were removed, fixed and examined under electron microscopy. Liver was the main target organ. The EM results revealed marked distortion on the nuclear membrane of liver cells in mice dosed with 1.0 mg/kg 5-chlorouracil or 10 mg/kg 5-chloro-6-hydroxymethyluracil, or higher.
Resumo:
Aging is considered one of the main predisposing factors for the development of prostate malignancies. Angiogenesis is fundamental for tumor growth and its inhibition represents a promising therapeutic approach in cancer treatment. Thus, we sought to determine angiogenic responses and the effects of antiangiogenic therapy in the mouse prostate during late life, comparing these findings with the prostatic microenvironment in the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model. Male mice (52 week-old FVB) were submitted to treatments with SU5416 (6 mg/kg; i.p.) and/or TNP-470 (15 mg/kg; s.c.). Finasteride was administered (20 mg/kg; s.c.), alone or in association to both inhibitors. The dorsolateral prostate was collected for VEGF, HIF-1α, FGF-2 and endostatin immunohistochemical and Western Blotting analyses and for microvessel density (MVD) count. Senescence led to increased MVD and VEGF, HIF-1α and FGF-2 protein levels in the prostatic microenvironment, similarly to what was observed in TRAMP mice prostate. The angiogenic process was impaired in all the treated groups, demonstrating significantly decreased MVD. Antiangiogenic and/or finasteride treatments resulted in decreased VEGF and HIF-1α levels, especially following TNP-470 administration, either alone or associated to SU5416. The combination of these agents resulted in increased endostatin levels, regardless of the presence of finasteride. Prostatic angiogenesis stimulation during senescence favored the development of neoplastic lesions, considering the pro-angiogenic microenvironment as a common aspect also observed during cancer progression in TRAMP mice. The combined antiangiogenic therapy was more efficient, leading to enhanced imbalance towards angiogenic inhibition in the organ. Finally, finasteride administration might secondarily upregulate the expression of pro-angiogenic factors, pointing to the harmful effects of this therapy. Prostate 75: 484-499, 2015. © 2014 Wiley Periodicals, Inc.
Resumo:
The presynaptic action of Bothriopsis bilineata smaragdina (forest viper) venom and Bbil-TX, an Asp49 PLA2 from this venom, was examined in detail in mouse phrenic nerve-muscle (PND) preparations in vitro and in a neuroblastoma cell line (SK-N-SH) in order to gain a better insight into the mechanism of action of the venom and associated Asp49 PLA2. In low Ca(2+) solution, venom (3μg/ml) caused a quadriphasic response in PND twitch height whilst at 10μg/ml the venom additionally induced an abrupt and marked initial contracture followed by neuromuscular facilitation, rhythmic oscillations of nerve-evoked twitches, alterations in baseline and progressive blockade. The venom slowed the relaxation phase of muscle twitches. In low Ca(2+), Bbil-TX [210nM (3μg/ml)] caused a progressive increase in PND twitch amplitude but no change in the decay time constant. Venom (10μg/ml) and Bbil-TX (210nM) caused minor changes in the compound action potential (CAP) amplitude recorded from sciatic nerve preparations, with no significant effect on rise time and latency; tetrodotoxin (3.1nM) blocked the CAP at the end of the experiments. In mouse triangularis sterni nerve-muscle (TSn-m) preparations, venom (10μg/ml) and Bbil-TX (210nM) significantly reduced the perineural waveform associated with the outward K(+) current while the amplitude of the inward Na(+) current was not significantly affected. Bbil-TX (210nM) caused a progressive increase in the quantal content of TSn-m preparations maintained in low Ca(2+) solution. Venom (3μg/ml) and toxin (210nM) increased the calcium fluorescence in SK-N-SH neuroblastoma cells loaded with Fluo3 AM and maintained in low or normal Ca(2+) solution. In normal Ca(2+), the increase in fluorescence amplitude was accompanied by irregular and frequent calcium transients. In TSn-m preparations loaded with Fluo4 AM, venom (10μg/ml) caused an immediate increase in intracellular Ca(2+) followed by oscillations in fluorescence and muscle contracture; Bbil-TX did not change the calcium fluorescence in TSn-m preparations. Immunohistochemical analysis of toxin-treated PND preparations revealed labeling of junctional ACh receptors but a loss of the presynaptic proteins synaptophysin and SNAP25. Together, these data confirm the presynaptic action of Bbil-TX and show that it involves modulation of K(+) channel activity and presynaptic protein expression.
Resumo:
Neutrophils (PMN) play a central role in host defense against the neglected fungal infection paracoccidioidomycosis (PCM), which is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb). PCM is of major importance, especially in Latin America, and its treatment relies on the use of antifungal drugs. However, the course of treatment is lengthy, leading to side effects and even development of fungal resistance. The goal of the study was to use low-level laser therapy (LLLT) to stimulate PMN to fight Pb in vivo. Swiss mice with subcutaneous air pouches were inoculated with a virulent strain of Pb or fungal cell wall components (Zymosan), and then received LLLT (780 nm; 50 mW; 12.5 J/cm2; 30 seconds per point, giving a total energy of 0.5 J per point) on alternate days at two points on each hind leg. The aim was to reach the bone marrow in the femur with light. Non-irradiated animals were used as controls. The number and viability of the PMN that migrated to the inoculation site was assessed, as well as their ability to synthesize proteins, produce reactive oxygen species (ROS) and their fungicidal activity. The highly pure PMN populations obtained after 10 days of infection were also subsequently cultured in the presence of Pb for trials of protein production, evaluation of mitochondrial activity, ROS production and quantification of viable fungi growth. PMN from mice that received LLLT were more active metabolically, had higher fungicidal activity against Pb in vivo and also in vitro. The kinetics of neutrophil protein production also correlated with a more activated state. LLLT may be a safe and non-invasive approach to deal with PCM infection.
Resumo:
Mapping of elements in biological tissue by laser induced mass spectrometry is a fast growing analytical methodology in life sciences. This method provides a multitude of useful information of metal, nonmetal, metalloid and isotopic distribution at major, minor and trace concentration ranges, usually with a lateral resolution of 12-160 µm. Selected applications in medical research require an improved lateral resolution of laser induced mass spectrometric technique at the low micrometre scale and below. The present work demonstrates the applicability of a recently developed analytical methodology - laser microdissection associated to inductively coupled plasma mass spectrometry (LMD ICP-MS) - to obtain elemental images of different solid biological samples at high lateral resolution. LMD ICP-MS images of mouse brain tissue samples stained with uranium and native are shown, and a direct comparison of LMD and laser ablation (LA) ICP-MS imaging methodologies, in terms of elemental quantification, is performed.
Resumo:
Sepsis is a systemic inflammatory response that can lead to tissue damage and death. In order to increase our understanding of sepsis, experimental models are needed that produce relevant immune and inflammatory responses during a septic event. We describe a lipopolysaccharide tolerance mouse model to characterize the cellular and molecular alterations of immune cells during sepsis. The model presents a typical lipopolysaccharide tolerance pattern in which tolerance is related to decreased production and secretion of cytokines after a subsequent exposure to a lethal dose of lipopolysaccharide. The initial lipopolysaccharide exposure also altered the expression patterns of cytokines and was followed by an 8- and a 1.5-fold increase in the T helper 1 and 2 cell subpopulations. Behavioral data indicate a decrease in spontaneous activity and an increase in body temperature following exposure to lipopolysaccharide. In contrast, tolerant animals maintained production of reactive oxygen species and nitric oxide when terminally challenged by cecal ligation and puncture (CLP). Survival study after CLP showed protection in tolerant compared to naive animals. Spleen mass increased in tolerant animals followed by increases of B lymphocytes and subpopulation Th1 cells. An increase in the number of stem cells was found in spleen and bone marrow. We also showed that administration of spleen or bone marrow cells from tolerant to naive animals transfers the acquired resistance status. In conclusion, lipopolysaccharide tolerance is a natural reprogramming of the immune system that increases the number of immune cells, particularly T helper 1 cells, and does not reduce oxidative stress.
Resumo:
Background: Environmental factors may influence the development of allergen sensitization and asthma. The aim of this study was to evaluate the role of endotoxin and allergen exposure in early life as a risk factor for recurrent wheezing. Methods: One hundred and four infants from low-income families, at high risk of asthma, were enrolled at birth. Dust samples were collected from the bedding and bedroom floor within 6 months after birth. Recurrent wheezing was defined as 3 or more wheezing episodes in the past year. Endotoxin was determined by Limulus amebocyte lysate assay, and major indoor allergens were quantitated by ELISA in dust extracts. IgE antibodies were measured by ImmunoCAP at 30 months of age. Results: At 30 months, 51 of the 99 infants who completed the study (51.5 per cent) had recurrent wheezing. Respiratory infection was strongly associated with recurrent wheezing (OR 6.67, 95 per cent CI 1.96-22.72), whereas exclusive breastfeeding for at least 1 month was a protective factor (OR 0.09, 95 per cent CI 0.01-0.51). Exposure to high levels of mouse allergen was more frequent among non-recurrent wheezers, approaching significance (OR 0.12, 95 per cent CI 0.01-1.13; p = 0.064). None of the children were sensitized to mouse. Sensitization to mite was found in 26/90 (28.8 per cent) children, with no association with recurrent wheezing. Conclusion: Respiratory infection was strongly associated with recurrent wheezing in the first 30 months of life, in children at high risk of asthma, living in a socially deprived community in Brazil
Resumo:
Background: Francisella tularensis causes severe pulmonary disease, and nasal vaccination could be the ideal measure to effectively prevent it. Nevertheless, the efficacy of this type of vaccine is influenced by the lack of an effective mucosal adjuvant. Methodology/Principal Findings: Mice were immunized via the nasal route with lipopolysaccharide isolated from F. tularensis and neisserial recombinant PorB as an adjuvant candidate. Then, mice were challenged via the same route with the F. tularensis attenuated live vaccine strain (LVS). Mouse survival and analysis of a number of immune parameters were conducted following intranasal challenge. Vaccination induced a systemic antibody response and 70% of mice were protected from challenge as showed by their improved survival and weight regain. Lungs from mice recovering from infection presented prominent lymphoid aggregates in peribronchial and perivascular areas, consistent with the location of bronchus-associated lymphoid tissue (BALT). BALT areas contained proliferating B and T cells, germinal centers, T cell infiltrates, dendritic cells (DCs). We also observed local production of antibody generating cells and homeostatic chemokines in BALT areas. Conclusions: These data indicate that PorB might be an optimal adjuvant candidate for improving the protective effect of F. tularensis antigens. The presence of BALT induced after intranasal challenge in vaccinated mice might play a role in regulation of local immunity and long-term protection, but more work is needed to elucidate mechanisms that lead to its formation.
Resumo:
The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.