936 resultados para Curvilinear coordinates.
Resumo:
Redundancy relations between vibrational coordinates may be linear (as for rectilinear coordinates used in deriving a G matrix), or non-linear (as for curvilinear coordinates used in formulating model force fields). It is shown that geometrically defined internal coordinates are necessarily curvilinear. Hence it is shown that linear force constants can occur in model force field calculations involving redundant coordinates, in disagreement with the recent proposal of Gussoni and Zerbi.
Alternate treatments of jacobian singularities in polar coordinates within finite-difference schemes
Resumo:
Jacobian singularities of differential operators in curvilinear coordinates occur when the Jacobian determinant of the curvilinear-to-Cartesian mapping vanishes, thus leading to unbounded coefficients in partial differential equations. Within a finite-difference scheme, we treat the singularity at the pole of polar coordinates by setting up complementary equations. Such equations are obtained by either integral or smoothness conditions. They are assessed by application to analytically solvable steady-state heat-conduction problems.
Resumo:
In virtue of reference Cartesian coordinates, geometrical relations of spatial curved structure are presented in orthogonal curvilinear coordinates. Dynamic equations for helical girder are derived by Hamilton principle. These equations indicate that four generalized displacements are coupled with each other. When spatial structure degenerates into planar curvilinear structure, two generalized displacements in two perpendicular planes are coupled with each other. Dynamic equations for arbitrary curvilinear structure may be obtained by the method used in this paper.
Resumo:
This paper analyses the transient effect on ideally plastic stationary crack-tip fields under mode I plane strain conditions, when the inertial forces are not negligible. It is shown that the governing equation for such a problem can be expressed in formal simplicity when referred to a system of moving curvilinear coordinates, which is a generalization of the system defined by the slip-line field in quasi-static plasticity. A perturbation method of solving the equations is described and illustrated by application to problems of ideally plastic stationary crack-tip fields when the inertia forces are not negligible.
Resumo:
This paper analyses the transient effect on ideally plastic stationary crack tip fields under mode I plane strain conditions, when the inertial forces are not negligible. It is shown that the governing equation for such a problem can be expressed in formal simplicity when referred to a system of moving curvilinear coordinates, which is a generalization of the system defined by the slip-line field in quasi-static plasticity. A perturbation method of solving the equations is described and illustrated by application to problems of ideally plastic stationary crack tip fields when the inertial forces are not negligible.
Resumo:
We present a method for analyzing the curvature (second derivatives) of the conical intersection hyperline at an optimized critical point. Our method uses the projected Hessians of the degenerate states after elimination of the two branching space coordinates, and is equivalent to a frequency calculation on a single Born-Oppenheimer potential-energy surface. Based on the projected Hessians, we develop an equation for the energy as a function of a set of curvilinear coordinates where the degeneracy is preserved to second order (i.e., the conical intersection hyperline). The curvature of the potential-energy surface in these coordinates is the curvature of the conical intersection hyperline itself, and thus determines whether one has a minimum or saddle point on the hyperline. The equation used to classify optimized conical intersection points depends in a simple way on the first- and second-order degeneracy splittings calculated at these points. As an example, for fulvene, we show that the two optimized conical intersection points of C2v symmetry are saddle points on the intersection hyperline. Accordingly, there are further intersection points of lower energy, and one of C2 symmetry - presented here for the first time - is found to be the global minimum in the intersection space
Resumo:
In this paper we describe and evaluate a geometric mass-preserving redistancing procedure for the level set function on general structured grids. The proposed algorithm is adapted from a recent finite element-based method and preserves the mass by means of a localized mass correction. A salient feature of the scheme is the absence of adjustable parameters. The algorithm is tested in two and three spatial dimensions and compared with the widely used partial differential equation (PDE)-based redistancing method using structured Cartesian grids. Through the use of quantitative error measures of interest in level set methods, we show that the overall performance of the proposed geometric procedure is better than PDE-based reinitialization schemes, since it is more robust with comparable accuracy. We also show that the algorithm is well-suited for the highly stretched curvilinear grids used in CFD simulations. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The electronic states of quantum rings with centerlines of arbitrary shape and non-uniform width in a threading magnetic field are calculated. The solutions of the Schrodinger equation with Dirichlet boundary conditions are obtained by a variational separation of variables in curvilinear coordinates. We obtain a width profile that compensates for the main effects of the curvature variations in the centerline. Numerical results are shown for circular, elliptical, and limacon-shaped quantum rings. We also show that smooth and tiny variations in the width may strongly affect the Aharonov-Bohm oscillations.
Resumo:
Jakobshavns Isbrae (69 degrees 10'N, 49 degrees 5'W) drains about 6.5% of the Greenland ice sheet and is the fastest ice stream known. The Jakobshavns Isbrae basin of about 10 000 km(2) was mapped photogrammetrically from four sets of aerial photography, two taken in July 1985 and two in July 1986. Positions and elevations of several hundred natural features on the ice surface were determined for each epoch by photogrammetric block-aerial triangulation, and surface velocity vectors were computed from the positions. The two flights in 1985 yielded the best results and provided most common points (716) for velocity determinations and are therefore used in the modeling studies. The data from these irregularly spaced points were used to calculate ice elevations and velocity vectors at uniformly spaced grid paints 3 km apart by interpolation. The field of surface strain rates was then calculated from these gridded data and used to compute the field of surface deviatoric stresses, using the flow law of ice, for rectilinear coordinates, X, Y pointing eastward and northward. and curvilinear coordinates, L, T pointing longitudinally and transversely to the changing ice-flow direction. Ice-surface elevations and slopes were then used to calculate ice thicknesses and the fraction of the ice velocity due to basal sliding. Our calculated ice thicknesses are in fair agreement with an ice-thickness map based on seismic sounding and supplied to us by K. Echelmeyer. Ice thicknesses were subtracted from measured ice-surface elevations to map bed topography. Our calculation shows that basal sliding is significant only in the 10-15 km before Jakobshavns Isbrae becomes afloat in Jakobshavns IsfJord.
Resumo:
The CMCC Global Ocean Physical Reanalysis System (C-GLORS) is used to simulate the state of the ocean in the last decades. It consists of a variational data assimilation system (OceanVar), capable of assimilating all in-situ observations along with altimetry data, and a forecast step performed by the ocean model NEMO coupled with the LIM2 sea-ice model. KEY STRENGTHS: - Data are available for a large number of ocean parameters - An extensive validation has been conducted and is freely available - The reanalysis is performed at high resolution (1/4 degree) and spans the last 30 years KEY LIMITATIONS: - Quality may be discontinuos and depend on observation coverage - Uncertainty estimates are simply derived through verification skill scores
Resumo:
En esta tesis se integran numéricamente las ecuaciones reducidas de Navier Stokes (RNS), que describen el flujo en una capa límite tridimensional que presenta también una escala característica espacial corta en el sentido transversal. La formulación RNS se usa para el cálculo de “streaks” no lineales de amplitud finita, y los resultados conseguidos coinciden con los existentes en la literatura, obtenidos típicamente utilizando simulación numérica directa (DNS) o nonlinear parabolized stability equations (PSE). El cálculo de los “streaks” integrando las RNS es mucho menos costoso que usando DNS, y no presenta los problemas de estabilidad que aparecen en la formulación PSE cuando la amplitud del “streak” deja de ser pequeña. El código de integración RNS se utiliza también para el cálculo de los “streaks” que aparecen de manera natural en el borde de ataque de una placa plana en ausencia de perturbaciones en la corriente uniforme exterior. Los resultados existentes hasta ahora calculaban estos “streaks” únicamente en el límite lineal (amplitud pequeña), y en esta tesis se lleva a cabo el cálculo de los mismos en el régimen completamente no lineal (amplitud finita). En la segunda parte de la tesis se generaliza el código RNS para incluir la posibilidad de tener una placa no plana, con curvatura en el sentido transversal que varía lentamente en el sentido de la corriente. Esto se consigue aplicando un cambio de coordenadas, que transforma el dominio físico en uno rectangular. La formulación RNS se integra también expresada en las correspondientes coordenadas curvilíneas. Este código generalizado RNS se utiliza finalmente para estudiar el flujo de capa límite sobre una placa con surcos que varían lentamente en el sentido de la corriente, y es usado para simular el flujo sobre surcos que crecen en tal sentido. Abstract In this thesis, the reduced Navier Stokes (RNS) equations are numerically integrated. This formulation describes the flow in a three-dimensional boundary layer that also presents a short characteristic space scale in the spanwise direction. RNS equations are used to calculate nonlinear finite amplitude “streaks”, and the results agree with those reported in the literature, typically obtained using direct numerical simulation (DNS) or nonlinear parabolized stability equations (PSE). “Streaks” simulations through the RNS integration are much cheaper than using DNS, and avoid stability problems that appear in the PSE when the amplitude of the “streak” is not small. The RNS integration code is also used to calculate the “streaks” that naturally emerge at the leading edge of a flat plate boundary layer in the absence of any free stream perturbations. Up to now, the existing results for these “streaks” have been only calculated in the linear limit (small amplitude), and in this thesis their calculation is carried out in the fully nonlinear regime (finite amplitude). In the second part of the thesis, the RNS code is generalized to include the possibility of having a non-flat plate, curved in the spanwise direction and slowly varying in the streamwise direction. This is achieved by applying a change of coordinates, which transforms the physical domain into a rectangular one. The RNS formulation expressed in the corresponding curvilinear coordinates is also numerically integrated. This generalized RNS code is finally used to study the boundary layer flow over a plate with grooves which vary slowly in the streamwise direction; and this code is used to simulate the flow over grooves that grow in the streamwise direction.
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Analytical solutions to problems in finite elasticity are most often derived using the semi-inverse approach along with the spatial form of the equations of motion involving the Cauchy stress tensor. This procedure is somewhat indirect since the spatial equations involve derivatives with respect to spatial coordinates while the unknown functions are in terms of material coordinates, thus necessitating the use of the chain rule. In this classroom note, we derive compact expressions for the components of the divergence, with respect to orthogonal material coordinates, of the first Piola-Kirchhoff stress tensor. The spatial coordinate system is also assumed to be an orthogonal curvilinear one, although, not necessarily of the same type as the material coordinate system. We show by means of some example applications how analytical solutions can be derived more directly using the derived results.
Resumo:
The current study aims to investigate the non-linear relationship between the JD-R model and work engagement. Previous research has identified linear relationships between these constructs; however there are strong theoretical arguments for testing curvilinear relationships (e.g., Warr, 1987). Data were collected via a self-report online survey from officers of one Australian police service (N = 2,626). Results demonstrated a curvilinear relationship between job demands and job resources and engagement. Gender (as a control variable) was also found to be a significant predictor of work engagement. The results indicated that male police officers experienced significantly higher job demands and colleague support than female officers. However, female police officers reported significantly higher levels of work engagement than male officers. This study emphasises the need to test curvilinear relationships, as well as simple linear associations, when measuring psychological health.
Resumo:
Image-based visual servo (IBVS) is a simple, efficient and robust technique for vision-based control. Although technically a local method in practice it demonstrates almost global convergence. However IBVS performs very poorly for cases that involve large rotations about the optical axis. It is well known that re-parameterizing the problem by using polar, instead of Cartesian coordinates, of feature points overcomes this limitation. First, simulation and experimental results are presented to show the complementarity of these two parameter-izations. We then describe a new hybrid visual servo strategy based on combining polar and Cartesian image Jacobians. © 2009 IEEE.