17 resultados para Curvilinear coordinates.
em CaltechTHESIS
Resumo:
Observations of the Galactic center region black hole candidate 1E 1740.7-2942 have been carried out using the Caltech Gamma-Ray Imaging Payload (GRIP), the Röntgensatellit (ROSAT) and the Very Large Array (VLA). These multiwavelength observations have helped to establish the association between a bright emitter of hard X-rays and soft γ-rays, the compact core of a double radio jet source, and the X-ray source, 1E 1740.7-2942. They have also provided information on the X-ray and hard X-ray spectrum.
The Galactic center region was observed by GRIP during balloon flights from Alice Springs, NT, Australia on 1988 April 12 and 1989 April 3. These observations revealed that 1E 1740.7-2942 was the strongest source of hard X-rays within ~10° of the Galactic center. The source spectrum from each flight is well fit by a single power law in the energy range 35-200 keV. The best-fit photon indices and 100 keV normalizations are: γ = (2.05 ± 0.15) and K_(100) = (8.5 ± 0.5) x 10^(-5) cm^(-2) s^(-1) keV^(-1) and γ = (2.2 ± 0.3) and K_(100) = (7.0 ± 0.7) x 10^(-5) cm^(-2) s^(-1) keV^(-1) for the 1988 and 1989 observations respectively. No flux above 200 keV was detected during either observation. These values are consistent with a constant spectrum and indicate that 1E 1740.7-2942 was in its normal hard X-ray emission state. A search on one hour time scales showed no evidence for variability.
The ROSAT HRI observed 1E 1740.7-2942 during the period 1991 March 20-24. An improved source location has been derived from this observation. The best fit coordinates (J2000) are: Right Ascension = 17^h43^m54^s.9, Declination = -29°44'45".3, with a 90% confidence error circle of radius 8".5. The PSPC observation was split between periods from 1992 September 28- October 4 and 1993 March 23-28. A thermal bremsstrahlung model fit to the data yields a column density of N_H = 1.12^(+1.51)_(0.18) x cm^(-2) , consistent with earlier X- ray measurements.
We observed the region of the Einstein IPC error circle for 1E 1740.7-2942 with the VLA at 1.5 and 4.9 GHz on 1989 March 2. The 4.9 GHz observation revealed two sources. Source 'A', which is the core of a double aligned radio jet source (Mirabel et al. 1992), lies within our ROSAT error circle, further strengthening its identification with 1E 1740.7-2942.
Resumo:
This thesis covers a range of topics in numerical and analytical relativity, centered around introducing tools and methodologies for the study of dynamical spacetimes. The scope of the studies is limited to classical (as opposed to quantum) vacuum spacetimes described by Einstein's general theory of relativity. The numerical works presented here are carried out within the Spectral Einstein Code (SpEC) infrastructure, while analytical calculations extensively utilize Wolfram's Mathematica program.
We begin by examining highly dynamical spacetimes such as binary black hole mergers, which can be investigated using numerical simulations. However, there are difficulties in interpreting the output of such simulations. One difficulty stems from the lack of a canonical coordinate system (henceforth referred to as gauge freedom) and tetrad, against which quantities such as Newman-Penrose Psi_4 (usually interpreted as the gravitational wave part of curvature) should be measured. We tackle this problem in Chapter 2 by introducing a set of geometrically motivated coordinates that are independent of the simulation gauge choice, as well as a quasi-Kinnersley tetrad, also invariant under gauge changes in addition to being optimally suited to the task of gravitational wave extraction.
Another difficulty arises from the need to condense the overwhelming amount of data generated by the numerical simulations. In order to extract physical information in a succinct and transparent manner, one may define a version of gravitational field lines and field strength using spatial projections of the Weyl curvature tensor. Introduction, investigation and utilization of these quantities will constitute the main content in Chapters 3 through 6.
For the last two chapters, we turn to the analytical study of a simpler dynamical spacetime, namely a perturbed Kerr black hole. We will introduce in Chapter 7 a new analytical approximation to the quasi-normal mode (QNM) frequencies, and relate various properties of these modes to wave packets traveling on unstable photon orbits around the black hole. In Chapter 8, we study a bifurcation in the QNM spectrum as the spin of the black hole a approaches extremality.
Resumo:
This thesis presents a new approach for the numerical solution of three-dimensional problems in elastodynamics. The new methodology, which is based on a recently introduced Fourier continuation (FC) algorithm for the solution of Partial Differential Equations on the basis of accurate Fourier expansions of possibly non-periodic functions, enables fast, high-order solutions of the time-dependent elastic wave equation in a nearly dispersionless manner, and it requires use of CFL constraints that scale only linearly with spatial discretizations. A new FC operator is introduced to treat Neumann and traction boundary conditions, and a block-decomposed (sub-patch) overset strategy is presented for implementation of general, complex geometries in distributed-memory parallel computing environments. Our treatment of the elastic wave equation, which is formulated as a complex system of variable-coefficient PDEs that includes possibly heterogeneous and spatially varying material constants, represents the first fully-realized three-dimensional extension of FC-based solvers to date. Challenges for three-dimensional elastodynamics simulations such as treatment of corners and edges in three-dimensional geometries, the existence of variable coefficients arising from physical configurations and/or use of curvilinear coordinate systems and treatment of boundary conditions, are all addressed. The broad applicability of our new FC elasticity solver is demonstrated through application to realistic problems concerning seismic wave motion on three-dimensional topographies as well as applications to non-destructive evaluation where, for the first time, we present three-dimensional simulations for comparison to experimental studies of guided-wave scattering by through-thickness holes in thin plates.
Resumo:
Studies in turbulence often focus on two flow conditions, both of which occur frequently in real-world flows and are sought-after for their value in advancing turbulence theory. These are the high Reynolds number regime and the effect of wall surface roughness. In this dissertation, a Large-Eddy Simulation (LES) recreates both conditions over a wide range of Reynolds numbers Reτ = O(102)-O(108) and accounts for roughness by locally modeling the statistical effects of near-wall anisotropic fine scales in a thin layer immediately above the rough surface. A subgrid, roughness-corrected wall model is introduced to dynamically transmit this modeled information from the wall to the outer LES, which uses a stretched-vortex subgrid-scale model operating in the bulk of the flow. Of primary interest is the Reynolds number and roughness dependence of these flows in terms of first and second order statistics. The LES is first applied to a fully turbulent uniformly-smooth/rough channel flow to capture the flow dynamics over smooth, transitionally rough and fully rough regimes. Results include a Moody-like diagram for the wall averaged friction factor, believed to be the first of its kind obtained from LES. Confirmation is found for experimentally observed logarithmic behavior in the normalized stream-wise turbulent intensities. Tight logarithmic collapse, scaled on the wall friction velocity, is found for smooth-wall flows when Reτ ≥ O(106) and in fully rough cases. Since the wall model operates locally and dynamically, the framework is used to investigate non-uniform roughness distribution cases in a channel, where the flow adjustments to sudden surface changes are investigated. Recovery of mean quantities and turbulent statistics after transitions are discussed qualitatively and quantitatively at various roughness and Reynolds number levels. The internal boundary layer, which is defined as the border between the flow affected by the new surface condition and the unaffected part, is computed, and a collapse of the profiles on a length scale containing the logarithm of friction Reynolds number is presented. Finally, we turn to the possibility of expanding the present framework to accommodate more general geometries. As a first step, the whole LES framework is modified for use in the curvilinear geometry of a fully-developed turbulent pipe flow, with implementation carried out in a spectral element solver capable of handling complex wall profiles. The friction factors have shown favorable agreement with the superpipe data, and the LES estimates of the Karman constant and additive constant of the log-law closely match values obtained from experiment.
Resumo:
For damaging response, the force-displacement relationship of a structure is highly nonlinear and history-dependent. For satisfactory analysis of such behavior, it is important to be able to characterize and to model the phenomenon of hysteresis accurately. A number of models have been proposed for response studies of hysteretic structures, some of which are examined in detail in this thesis. There are two popular classes of models used in the analysis of curvilinear hysteretic systems. The first is of the distributed element or assemblage type, which models the physical behavior of the system by using well-known building blocks. The second class of models is of the differential equation type, which is based on the introduction of an extra variable to describe the history dependence of the system.
Owing to their mathematical simplicity, the latter models have been used extensively for various applications in structural dynamics, most notably in the estimation of the response statistics of hysteretic systems subjected to stochastic excitation. But the fundamental characteristics of these models are still not clearly understood. A response analysis of systems using both the Distributed Element model and the differential equation model when subjected to a variety of quasi-static and dynamic loading conditions leads to the following conclusion: Caution must be exercised when employing the models belonging to the second class in structural response studies as they can produce misleading results.
The Massing's hypothesis, originally proposed for steady-state loading, can be extended to general transient loading as well, leading to considerable simplification in the analysis of the Distributed Element models. A simple, nonparametric identification technique is also outlined, by means of which an optimal model representation involving one additional state variable is determined for hysteretic systems.
Resumo:
This thesis introduces new tools for geometric discretization in computer graphics and computational physics. Our work builds upon the duality between weighted triangulations and power diagrams to provide concise, yet expressive discretization of manifolds and differential operators. Our exposition begins with a review of the construction of power diagrams, followed by novel optimization procedures to fully control the local volume and spatial distribution of power cells. Based on this power diagram framework, we develop a new family of discrete differential operators, an effective stippling algorithm, as well as a new fluid solver for Lagrangian particles. We then turn our attention to applications in geometry processing. We show that orthogonal primal-dual meshes augment the notion of local metric in non-flat discrete surfaces. In particular, we introduce a reduced set of coordinates for the construction of orthogonal primal-dual structures of arbitrary topology, and provide alternative metric characterizations through convex optimizations. We finally leverage these novel theoretical contributions to generate well-centered primal-dual meshes, sphere packing on surfaces, and self-supporting triangulations.
Resumo:
The effects of electron temperature on the radiation fields and the resistance of a short dipole antenna embedded in a uniaxial plasma have been studied. It is found that for ω < ω_p the antenna excites two waves, a slow wave and a fast wave. These waves propagate only within a cone whose axis is parallel to the biasing magnetostatic field B_o and whose semicone angle is slightly less than sin ^(-1) (ω/ω_p). In the case of ω > ω_p the antenna excites two separate modes of radiation. One of the modes is the electromagnetic mode, while the other mode is of hot plasma origin. A characteristic interference structure is noted in the angular distribution of the field. The far fields are evaluated by asymptotic methods, while the near fields are calculated numerically. The effects of antenna length ℓ, electron thermal speed, collisional and Landau damping on the near field patterns have been studied.
The input and the radiation resistances are calculated and are shown to remain finite for nonzero electron thermal velocities. The effect of Landau damping and the antenna length on the input and radiation resistances has been considered.
The radiation condition for solving Maxwell's equations is discussed and the phase and group velocities for propagation given. It is found that for ω < ω_p in the radial direction (cylindrical coordinates) the power flow is in the opposite direction to that of the phase propagation. For ω > ω_p the hot plasma mode has similar characteristics.
Resumo:
In the five chapters that follow, I delineate my efforts over the last five years to synthesize structurally and chemically relevant models of the Oxygen Evolving Complex (OEC) of Photosystem II. The OEC is nature’s only water oxidation catalyst, in that it forms the dioxygen in our atmosphere necessary for oxygenic life. Therefore understanding its structure and function is of deep fundamental interest and could provide design elements for artificial photosynthesis and manmade water oxidation catalysts. Synthetic endeavors towards OEC mimics have been an active area of research since the mid 1970s and have mutually evolved alongside biochemical and spectroscopic studies, affording ever-refined proposals for the structure of the OEC and the mechanism of water oxidation. This research has culminated in the most recent proposal: a low symmetry Mn4CaO5 cluster with a distorted Mn3CaO4 cubane bridged to a fourth, dangling Mn. To give context for how my graduate work fits into this rich history of OEC research, Chapter 1 provides a historical timeline of proposals for OEC structure, emphasizing the role that synthetic Mn and MnCa clusters have played, and ending with our Mn3CaO4 heterometallic cubane complexes.
In Chapter 2, the triarylbenzene ligand framework used throughout my work is introduced, and trinuclear clusters of Mn, Co, and Ni are discussed. The ligand scaffold consistently coordinates three metals in close proximity while leaving coordination sites open for further modification through ancillary ligand binding. The ligands coordinated could be varied, with a range of carboxylates and some less coordinating anions studied. These complexes’ structures, magnetic behavior, and redox properties are discussed.
Chapter 3 explores the redox chemistry of the trimanganese system more thoroughly in the presence of a fourth Mn equivalent, finding a range of oxidation states and oxide incorporation dependent on oxidant, solvent, and Mn salt. Oxidation states from MnII4 to MnIIIMnIV3 were observed, with 1-4 O2– ligands incorporated, modeling the photoactivation of the OEC. These complexes were studied by X-ray diffraction, EPR, XAS, magnetometry, and CV.
As Ca2+ is a necessary component of the OEC, Chapter 4 discusses synthetic strategies for making highly structurally accurate models of the OEC containing both Mn and Ca in the Mn3CaO4 cubane + dangling Mn geometry. Structural and electrochemical characterization of the first Mn3CaO4 heterometallic cubane complex— and comparison to an all-Mn Mn4O4 analog—suggests a role for Ca2+ in the OEC. Modification of the Mn3CaO4 system by ligand substitution affords low symmetry Mn3CaO4 complexes that are the most accurate models of the OEC to date.
Finally, in Chapter 5 the reactivity of the Mn3CaO4 cubane complexes toward O- atom transfer is discussed. The metal M strongly affects the reactivity. The mechanisms of O-atom transfer and water incorporation from and into Mn4O4 and Mn4O3 clusters, respectively, are studied through computation and 18O-labeling studies. The μ3-oxos of the Mn4O4 system prove fluxional, lending support for proposals of O2– fluxionality within the OEC.
Resumo:
The E‒H bond activation chemistry of tris-phosophino-iron and -cobalt metallaboratranes is discussed. The ferraboratrane complex (TPB)Fe(N2) heterolytically activates H‒H and the C‒H bonds of formaldehyde and arylacetylenes across an Fe‒B bond. In particular, H‒H bond cleavage at (TPB)Fe(N2) is reversible and affords the iron-hydride-borohydride complex (TPB)(μ‒H)Fe(L)(H) (L = H2, N2). (TPB)(μ‒H)Fe(L)(H) and (TPB)Fe(N2) are competent olefin and arylacetylene hydrogenation catalysts. Stoichiometric studies indicate that the B‒H unit is capable of acting as a hydride shuttle in the hydrogenation of olefin and arylacetylene substrates. The heterolytic cleavage of H2 by the (TPB)Fe system is distinct from the previously reported (TPB)Co(H2) complex, where H2 coordinates as a non-classical H2 adduct based on X-ray, spectroscopic, and reactivity data. The non-classical H2 ligand in (TPB)Co(H2) is confirmed in this work by single crystal neutron diffraction, which unequivocally shows an intact H‒H bond of 0.83 Å in the solid state. The neutron structure also shows that the H2 ligand is localized at two orientations on cobalt trans to the boron. This localization in the solid state contrasts with the results from ENDOR spectroscopy that show that the H2 ligand freely rotates about the Co‒H2 axis in frozen solution. Finally, the (TPB)Fe system, as well as related tris-phosphino-iron complexes that contain a different apical ligand unit (Si, PhB, C, and N) in place of the boron in (TPB)Fe, were studied for CO2 hydrogenation chemistry. The (TPB)Fe system is not catalytically competent, while the silicon, borate, carbon variants, (SiPR3)Fe, (PhBPiPr3)Fe, and (CPiPr3)Fe, respectively, are catalysts for the hydrogenation of CO2 to formate and methylformate. The hydricity of the CO2 reactive species in the silatrane system (SiPiPr3)Fe(N2)(H) has been experimentally estimated.
Resumo:
G-protein coupled receptors (GPCRs) form a large family of proteins and are very important drug targets. They are membrane proteins, which makes computational prediction of their structure challenging. Homology modeling is further complicated by low sequence similarly of the GPCR superfamily.
In this dissertation, we analyze the conserved inter-helical contacts of recently solved crystal structures, and we develop a unified sequence-structural alignment of the GPCR superfamily. We use this method to align 817 human GPCRs, 399 of which are nonolfactory. This alignment can be used to generate high quality homology models for the 817 GPCRs.
To refine the provided GPCR homology models we developed the Trihelix sampling method. We use a multi-scale approach to simplify the problem by treating the transmembrane helices as rigid bodies. In contrast to Monte Carlo structure prediction methods, the Trihelix method does a complete local sampling using discretized coordinates for the transmembrane helices. We validate the method on existing structures and apply it to predict the structure of the lactate receptor, HCAR1. For this receptor, we also build extracellular loops by taking into account constraints from three disulfide bonds. Docking of lactate and 3,5-dihydroxybenzoic acid shows likely involvement of three Arg residues on different transmembrane helices in binding a single ligand molecule.
Protein structure prediction relies on accurate force fields. We next present an effort to improve the quality of charge assignment for large atomic models. In particular, we introduce the formalism of the polarizable charge equilibration scheme (PQEQ) and we describe its implementation in the molecular simulation package Lammps. PQEQ allows fast on the fly charge assignment even for reactive force fields.
Resumo:
This thesis consists of two parts. In Part I, we develop a multipole moment formalism in general relativity and use it to analyze the motion and precession of compact bodies. More specifically, the generic, vacuum, dynamical gravitational field of the exterior universe in the vicinity of a freely moving body is expanded in positive powers of the distance r away from the body's spatial origin (i.e., in the distance r from its timelike-geodesic world line). The expansion coefficients, called "external multipole moments,'' are defined covariantly in terms of the Riemann curvature tensor and its spatial derivatives evaluated on the body's central world line. In a carefully chosen class of de Donder coordinates, the expansion of the external field involves only integral powers of r ; no logarithmic terms occur. The expansion is used to derive higher-order corrections to previously known laws of motion and precession for black holes and other bodies. The resulting laws of motion and precession are expressed in terms of couplings of the time derivatives of the body's quadrupole and octopole moments to the external moments, i.e., to the external curvature and its gradient.
In part II, we study the interaction of magnetohydrodynamic (MHD) waves in a black-hole magnetosphere with the "dragging of inertial frames" effect of the hole's rotation - i.e., with the hole's "gravitomagnetic field." More specifically: we first rewrite the laws of perfect general relativistic magnetohydrodynamics (GRMHD) in 3+1 language in a general spacetime, in terms of quantities (magnetic field, flow velocity, ...) that would be measured by the ''fiducial observers” whose world lines are orthogonal to (arbitrarily chosen) hypersurfaces of constant time. We then specialize to a stationary spacetime and MHD flow with one arbitrary spatial symmetry (e.g., the stationary magnetosphere of a Kerr black hole); and for this spacetime we reduce the GRMHD equations to a set of algebraic equations. The general features of the resulting stationary, symmetric GRMHD magnetospheric solutions are discussed, including the Blandford-Znajek effect in which the gravitomagnetic field interacts with the magnetosphere to produce an outflowing jet. Then in a specific model spacetime with two spatial symmetries, which captures the key features of the Kerr geometry, we derive the GRMHD equations which govern weak, linealized perturbations of a stationary magnetosphere with outflowing jet. These perturbation equations are then Fourier analyzed in time t and in the symmetry coordinate x, and subsequently solved numerically. The numerical solutions describe the interaction of MHD waves with the gravitomagnetic field. It is found that, among other features, when an oscillatory external force is applied to the region of the magnetosphere where plasma (e+e-) is being created, the magnetosphere responds especially strongly at a particular, resonant, driving frequency. The resonant frequency is that for which the perturbations appear to be stationary (time independent) in the common rest frame of the freshly created plasma and the rotating magnetic field lines. The magnetosphere of a rotating black hole, when buffeted by nonaxisymmetric magnetic fields anchored in a surrounding accretion disk, might exhibit an analogous resonance. If so then the hole's outflowing jet might be modulated at resonant frequencies ω=(m/2) ΩH where m is an integer and ΩH is the hole's angular velocity.
Resumo:
The ability to reproduce is a defining characteristic of all living organisms. During reproduction, the integrity of genetic material transferred from one generation to the next is of utmost importance. Organisms have diverse strategies to ensure the fidelity of genomic information inherited between generations of individuals. In sexually reproducing animals, the piRNA pathway is an RNA-interference (RNAi) mechanism that protects the genomes of germ cells from the replication of ‘selfish’ genetic sequences called transposable elements (TE). When left unabated, the replication of TE sequences can cause gene disruption, double-stranded DNA breaks, and germ cell death that results in sterility of the organism. In Drosophila, the piRNA pathway is divided into a cytoplasmic and nuclear branch that involves the functions of three Piwi-clade Argonaute proteins—Piwi, Aubergine (Aub) and Argonaute-3 (Ago3)—which bind piwi-interacting RNA (piRNA) to form the effector complexes that represses deleterious TE sequences.
The work presented in this thesis examines the function and regulation of Piwi proteins in Drosophila germ cells. Chapter 1 presents an introduction to piRNA biogenesis and to the essential roles occupied by each Piwi protein in the repression of TE. We discuss the architecture and function of germ granules as the cellular compartments where much of the piRNA pathway operates. In Chapter 2, we present how Piwi in the nucleus co-transcriptionally targets genomic loci expressing TE sequences to direct the deposition of repressive chromatin marks. Chapter 3 examines the cytoplasmic function of the piRNA pathway, where we find that the protein Krimper coordinates Aub and Ago3 in the piRNA ping-pong pathway to adaptively target and destroy TE transcripts. Chapter 4 explores how interactions of Piwis with associated proteins are modulated by arginine methylation modifications. Lastly, in Chapter 5 I present evidence that the cytoplasmic branch of the piRNA pathway can potentially ‘cross-talk’ with the nuclear branch to transfer sequence information to better target and co-transcriptionally silence the genomic loci coding active TE sequences. Overall, the work presented in this thesis constitutes a part of the first steps in understanding the molecular mechanisms that protect germ cells from invasion by TE sequences.
Resumo:
The propagation of waves in an extended, irregular medium is studied under the "quasi-optics" and the "Markov random process" approximations. Under these assumptions, a Fokker-Planck equation satisfied by the characteristic functional of the random wave field is derived. A complete set of the moment equations with different transverse coordinates and different wavenumbers is then obtained from the characteristic functional. The derivation does not require Gaussian statistics of the random medium and the result can be applied to the time-dependent problem. We then solve the moment equations for the phase correlation function, angular broadening, temporal pulse smearing, intensity correlation function, and the probability distribution of the random waves. The necessary and sufficient conditions for strong scintillation are also given.
We also consider the problem of diffraction of waves by a random, phase-changing screen. The intensity correlation function is solved in the whole Fresnel diffraction region and the temporal pulse broadening function is derived rigorously from the wave equation.
The method of smooth perturbations is applied to interplanetary scintillations. We formulate and calculate the effects of the solar-wind velocity fluctuations on the observed intensity power spectrum and on the ratio of the observed "pattern" velocity and the true velocity of the solar wind in the three-dimensional spherical model. The r.m.s. solar-wind velocity fluctuations are found to be ~200 km/sec in the region about 20 solar radii from the Sun.
We then interpret the observed interstellar scintillation data using the theories derived under the Markov approximation, which are also valid for the strong scintillation. We find that the Kolmogorov power-law spectrum with an outer scale of 10 to 100 pc fits the scintillation data and that the ambient averaged electron density in the interstellar medium is about 0.025 cm-3. It is also found that there exists a region of strong electron density fluctuation with thickness ~10 pc and mean electron density ~7 cm-3 between the PSR 0833-45 pulsar and the earth.
Resumo:
Theoretical and experimental studies were conducted to investigate the wave induced oscillations in an arbitrary shaped harbor with constant depth which is connected to the open-sea.
A theory termed the “arbitrary shaped harbor” theory is developed. The solution of the Helmholtz equation, ∇2f + k2f = 0, is formulated as an integral equation; an approximate method is employed to solve the integral equation by converting it to a matrix equation. The final solution is obtained by equating, at the harbor entrance, the wave amplitude and its normal derivative obtained from the solutions for the regions outside and inside the harbor.
Two special theories called the circular harbor theory and the rectangular harbor theory are also developed. The coordinates inside a circular and a rectangular harbor are separable; therefore, the solution for the region inside these harbors is obtained by the method of separation of variables. For the solution in the open-sea region, the same method is used as that employed for the arbitrary shaped harbor theory. The final solution is also obtained by a matching procedure similar to that used for the arbitrary shaped harbor theory. These two special theories provide a useful analytical check on the arbitrary shaped harbor theory.
Experiments were conducted to verify the theories in a wave basin 15 ft wide by 31 ft long with an effective system of wave energy dissipators mounted along the boundary to simulate the open-sea condition.
Four harbors were investigated theoretically and experimentally: circular harbors with a 10° opening and a 60° opening, a rectangular harbor, and a model of the East and West Basins of Long Beach Harbor located in Long Beach, California.
Theoretical solutions for these four harbors using the arbitrary shaped harbor theory were obtained. In addition, the theoretical solutions for the circular harbors and the rectangular harbor using the two special theories were also obtained. In each case, the theories have proven to agree well with the experimental data.
It is found that: (1) the resonant frequencies for a specific harbor are predicted correctly by the theory, although the amplification factors at resonance are somewhat larger than those found experimentally,(2) for the circular harbors, as the width of the harbor entrance increases, the amplification at resonance decreases, but the wave number bandwidth at resonance increases, (3) each peak in the curve of entrance velocity vs incident wave period corresponds to a distinct mode of resonant oscillation inside the harbor, thus the velocity at the harbor entrance appears to be a good indicator for resonance in harbors of complicated shape, (4) the results show that the present theory can be applied with confidence to prototype harbors with relatively uniform depth and reflective interior boundaries.
Resumo:
The design of a two-stream wind tunnel was undertaken to allow the simulation and study of certain features of the flow field around the blades of high-speed axial-flow turbomachineries. The mixing of the two parallel streams with designed Mach numbers respectively equal to 1.4 and 0.7 will simulate the transonic Mach number distribution generally obtained along the tips of the first stage blades in large bypass-fan engines.
The GALCIT hypersonic compressor plant will be used as an air supply for the wind tunnel, and consequently the calculations contained in the first chapter are derived from the characteristics and the performance of this plant.
The transonic part of the nozzle is computed by using a method developed by K. O. Friedrichs. This method consists essentially of expanding the coordinates and the characteristics of the flow in power series. The development begins with prescribing, more or less arbitrarily, a Mach number distribution along the centerline of the nozzle. This method has been programmed for an IBM 360 computer to define the wall contour of the nozzle.
A further computation is carried out to correct the contour for boundary layer buildup. This boundary layer analysis included geometry, pressure gradient, and Mach number effects. The subsonic nozzle is calculated {including boundary layer buildup) by using the same computer programs. Finally, the mixing zone downstream of the splitter plate was investigated to prescribe the wall contour correction necessary to ensure a constant-pressure test section.