986 resultados para Cure fraction models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the generalized log-gamma regression model is modified to allow the possibility that long-term survivors may be present in the data. This modification leads to a generalized log-gamma regression model with a cure rate, encompassing, as special cases, the log-exponential, log-Weibull and log-normal regression models with a cure rate typically used to model such data. The models attempt to simultaneously estimate the effects of explanatory variables on the timing acceleration/deceleration of a given event and the surviving fraction, that is, the proportion of the population for which the event never occurs. The normal curvatures of local influence are derived under some usual perturbation schemes and two martingale-type residuals are proposed to assess departures from the generalized log-gamma error assumption as well as to detect outlying observations. Finally, a data set from the medical area is analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many recent survival studies propose modeling data with a cure fraction, i.e., data in which part of the population is not susceptible to the event of interest. This event may occur more than once for the same individual (recurrent event). We then have a scenario of recurrent event data in the presence of a cure fraction, which may appear in various areas such as oncology, finance, industries, among others. This paper proposes a multiple time scale survival model to analyze recurrent events using a cure fraction. The objective is analyzing the efficiency of certain interventions so that the studied event will not happen again in terms of covariates and censoring. All estimates were obtained using a sampling-based approach, which allows information to be input beforehand with lower computational effort. Simulations were done based on a clinical scenario in order to observe some frequentist properties of the estimation procedure in the presence of small and moderate sample sizes. An application of a well-known set of real mammary tumor data is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A particle swarm optimisation approach is used to determine the accuracy and experimental relevance of six disparate cure kinetics models. The cure processes of two commercially available thermosetting polymer materials utilised in microelectronics manufacturing applications have been studied using a differential scanning calorimetry system. Numerical models have been fitted to the experimental data using a particle swarm optimisation algorithm which enables the ultimate accuracy of each of the models to be determined. The particle swarm optimisation approach to model fitting proves to be relatively rapid and effective in determining the optimal coefficient set for the cure kinetics models. Results indicate that the singlestep autocatalytic model is able to represent the curing process more accurately than more complex model, with ultimate accuracy likely to be limited by inaccuracies in the processing of the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we develop a flexible cure rate survival model by assuming the number of competing causes of the event of interest to follow a compound weighted Poisson distribution. This model is more flexible in terms of dispersion than the promotion time cure model. Moreover, it gives an interesting and realistic interpretation of the biological mechanism of the occurrence of event of interest as it includes a destructive process of the initial risk factors in a competitive scenario. In other words, what is recorded is only from the undamaged portion of the original number of risk factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a cure rate survival model by assuming the number of competing causes of the event of interest follows the Geometric distribution and the time to event follow a Birnbaum Saunders distribution. We consider a frequentist analysis for parameter estimation of a Geometric Birnbaum Saunders model with cure rate. Finally, to analyze a data set from the medical area. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of authors have studies the mixture survival model to analyze survival data with nonnegligible cure fractions. A key assumption made by these authors is the independence between the survival time and the censoring time. To our knowledge, no one has studies the mixture cure model in the presence of dependent censoring. To account for such dependence, we propose a more general cure model which allows for dependent censoring. In particular, we derive the cure models from the perspective of competing risks and model the dependence between the censoring time and the survival time using a class of Archimedean copula models. Within this framework, we consider the parameter estimation, the cure detection, and the two-sample comparison of latency distribution in the presence of dependent censoring when a proportion of patients is deemed cured. Large sample results using the martingale theory are obtained. We applied the proposed methodologies to the SEER prostate cancer data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we proposed a flexible cure rate survival model by assuming the number of competing causes of the event of interest following the Conway-Maxwell distribution and the time for the event to follow the generalized gamma distribution. This distribution can be used to model survival data when the hazard rate function is increasing, decreasing, bathtub and unimodal-shaped including some distributions commonly used in lifetime analysis as particular cases. Some appropriate matrices are derived in order to evaluate local influence on the estimates of the parameters by considering different perturbations, and some global influence measurements are also investigated. Finally, data set from the medical area is analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Survival models deals with the modelling of time to event data. In certain situations, a share of the population can no longer be subjected to the event occurrence. In this context, the cure fraction models emerged. Among the models that incorporate a fraction of cured one of the most known is the promotion time model. In the present study we discuss hypothesis testing in the promotion time model with Weibull distribution for the failure times of susceptible individuals. Hypothesis testing in this model may be performed based on likelihood ratio, gradient, score or Wald statistics. The critical values are obtained from asymptotic approximations, which may result in size distortions in nite sample sizes. This study proposes bootstrap corrections to the aforementioned tests and Bartlett bootstrap to the likelihood ratio statistic in Weibull promotion time model. Using Monte Carlo simulations we compared the nite sample performances of the proposed corrections in contrast with the usual tests. The numerical evidence favors the proposed corrected tests. At the end of the work an empirical application is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many data sets from clinical studies there are patients insusceptible to the occurrence of the event of interest. Survival models which ignore this fact are generally inadequate. The main goal of this paper is to describe an application of the generalized additive models for location, scale, and shape (GAMLSS) framework to the fitting of long-term survival models. in this work the number of competing causes of the event of interest follows the negative binomial distribution. In this way, some well known models found in the literature are characterized as particular cases of our proposal. The model is conveniently parameterized in terms of the cured fraction, which is then linked to covariates. We explore the use of the gamlss package in R as a powerful tool for inference in long-term survival models. The procedure is illustrated with a numerical example. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we develop a flexible cure rate survival model by assuming the number of competing causes of the event of interest to follow the Conway-Maxwell Poisson distribution. This model includes as special cases some of the well-known cure rate models discussed in the literature. Next, we discuss the maximum likelihood estimation of the parameters of this cure rate survival model. Finally, we illustrate the usefulness of this model by applying it to a real cutaneous melanoma data. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of this paper is to investigate a cure rate model that comprehends some well-known proposals found in the literature. In our work the number of competing causes of the event of interest follows the negative binomial distribution. The model is conveniently reparametrized through the cured fraction, which is then linked to covariates by means of the logistic link. We explore the use of Markov chain Monte Carlo methods to develop a Bayesian analysis in the proposed model. The procedure is illustrated with a numerical example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we extend the long-term survival model proposed by Chen et al. [Chen, M.-H., Ibrahim, J.G., Sinha, D., 1999. A new Bayesian model for survival data with a surviving fraction. journal of the American Statistical Association 94, 909-919] via the generating function of a real sequence introduced by Feller [Feller, W., 1968. An Introduction to Probability Theory and its Applications, third ed., vol. 1, Wiley, New York]. A direct consequence of this new formulation is the unification of the long-term survival models proposed by Berkson and Gage [Berkson, J., Gage, R.P., 1952. Survival cure for cancer patients following treatment. journal of the American Statistical Association 47, 501-515] and Chen et al. (see citation above). Also, we show that the long-term survival function formulated in this paper satisfies the proportional hazards property if, and only if, the number of competing causes related to the occurrence of an event of interest follows a Poisson distribution. Furthermore, a more flexible model than the one proposed by Yin and Ibrahim [Yin, G., Ibrahim, J.G., 2005. Cure rate models: A unified approach. The Canadian journal of Statistics 33, 559-570] is introduced and, motivated by Feller`s results, a very useful competing index is defined. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, for the first time, we propose the negative binomial-beta Weibull (BW) regression model for studying the recurrence of prostate cancer and to predict the cure fraction for patients with clinically localized prostate cancer treated by open radical prostatectomy. The cure model considers that a fraction of the survivors are cured of the disease. The survival function for the population of patients can be modeled by a cure parametric model using the BW distribution. We derive an explicit expansion for the moments of the recurrence time distribution for the uncured individuals. The proposed distribution can be used to model survival data when the hazard rate function is increasing, decreasing, unimodal and bathtub shaped. Another advantage is that the proposed model includes as special sub-models some of the well-known cure rate models discussed in the literature. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes. We analyze a real data set for localized prostate cancer patients after open radical prostatectomy.