940 resultados para Culture cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the role of fimbriae and flagella in the pathogenesis of avian colibacillosis, isogenic insertionally inactivated mutant strains of Escherichia coil O78:K80 strain EC34195 defective in the elaboration of type-1 and curli fimbriae and flagella were constructed by allelic exchange, Single and multiple non-fimbriate and non-flagellate mutant strains were compared to the wild-type in vitro in adherence assays with a HEp-2 cell line, a mucus-secreting cell line HT2916E, a non-mucus-secreting cell line HT2919A, tracheal explant and proximal gut explant, Mutant strains defective in the elaboration of type-1 fimbriae were significantly less adherent - in the order of 90% reduction - than the wild-type strain in all assays. Mutant strains defective in the elaboration of flagella were generally as adherent as the wild-type strain except when assayed with the mucus-secreting cell line HT2916E, for which a significant reduction of adherence - of the order of 90% - compared with the wild-type strain was observed. Mutant strains defective for the elaboration of curb fimbriae adhered as well as the wild-type strain in all assays, except when assayed in tests with gut explant tissue for which a significant reduction of adherence - of the order of 80% - compared with the wild-type strain was observed, Adherence to explants was to epithelial, not serous, surfaces and was 10-fold greater to tracheal than to gut explants, Together, these data support the hypothesis that type-1 fimbriae are significant factors in adherence, aided by flagella for penetration of mucus and curli fimbriae for adherence to the gut.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intimin, an outer membrane protein encoded by eaeA, is a key determinant for the formation of attaching and effacing (AE) lesions by enterohaemorrhagic Escherichia coli (EHEC). To investigate the role of intimin in adherence, the eaeA gene was insertionally inactivated in three EHEC O157:H7 strains of diverse origin. The absence or presence of intimin did not correlate with the extent of adhesion of mutant or wild-type O157:H7 in tissue culture and neonatal calf gut tissue explant adherence assays. Adherence of the eaeA mutants to HEp-2 cells was diffuse with no evidence of intimate attachment whereas wild-type bacteria formed microcolonies and AE lesions. Intimin-independent adherence to neonatal calf gut explants was demonstrated by eaeA mutants and wild-type strains which adhered in the greatest numbers to colon but least well to rumen tissue. These results confirm that intimin is necessary for intimate attachment and that additional adherence factors are involved in intimin-independent adherence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron microscopy of human skin fibroblasts syringe-loaded with human immunodeficiency virus type 1 protease (HIV-1 PR) revealed several effects on nuclear architecture. The most dramatic is a change from a spherical nuclear morphology to one with multiple lobes or deep invaginations. The nuclear matrix collapses or remains only as a peripheral rudiment, with individual elements thicker than in control cells. Chromatin organization and distribution is also perturbed. Attempts to identify a major nuclear protein whose cleavage by the protease might be responsible for these alterations were unsuccessful. Similar changes were observed in SW 13 T3 M [vimentin+] cells, whereas no changes were observed in SW 13 [vimentin−] cells after microinjection of protease. Treatment of SW 13 [vimentin−] cells, preinjected with vimentin to establish an intermediate filament network, with HIV-1 PR resulted in alterations in chromatin staining and distribution, but not in nuclear shape. These same changes were produced in SW 13 [vimentin−] cells after the injection of a mixture of vimentin peptides, produced by the cleavage of vimentin to completion by HIV-1 PR in vitro. Similar experiments with 16 purified peptides derived from wild-type or mutant vimentin proteins and five synthetic peptides demonstrated that exclusively N-terminal peptides were capable of altering chromatin distribution. Furthermore, two separate regions of the N-terminal head domain are primarily responsible for perturbing nuclear architecture. The ability of HIV-1 to affect nuclear organization via the liberation of vimentin peptides may play an important role in HIV-1-associated cytopathogenesis and carcinogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current methods for purifying caveolae from tissue culture cells take advantage of the Triton X-100 insolubility of this membrane domain. To circumvent the use of detergents, we have developed a method that depends upon the unique buoyant density of caveolae membrane. The caveolae fractions that we obtain are highly enriched in caveolin. As a consequence we are able to identify caveolae-associated proteins that had previously gone undetected. Moreover, resident caveolae proteins that are soluble in Triton X-100 are retained during the isolation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Salmonella enteritidis expresses flagella and several finely regulated fimbriae, including SEF14, SEF17 and SEF21 (type 1). A panel of mutants was prepared in three strains of S. enteritidis to elucidate the role of these surface appendages in the association with and invasion of cultured epithelial cells. In all assays, the naturally occurring regulatory-defective strain 27655R associated with tissue culture cells significantly more than wild-type progenitor strains LA5 and S1400/94. Compared with wild-type strains, SEF14 mutants had no effect on association and invasion, whereas SEF17, SEF21 and aflagellate mutants showed significant reductions in both processes. Histological examination suggested a role for SEF17 in localized, aggregative adherence, which could be specifically blocked by anti-SEF17 sera and purified SEF17 fimbriae. SEF21-mediated association was neutralized by mannose and a specific monoclonal antibody, although to observe enhanced association it was necessary for the bacteria to be in fimbriate phase prior to infection. Additionally, aflagellate mutants associated and invaded less than motile bacteria. This study demonstrated the potential for multifactorial association and invasion of epithelial cells which involved SEF17 and SEF21 fimbriae, and flagella-mediated motility.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to investigate the osteoblastic activity of cells derived from the midpalatal suture upon treatment with low-level laser therapy (LLLT) after rapid maxillary expansion (RME). A total of 30 rats were divided into two groups: experimental I (15 rats with RME without LLLT) and experimental II (15 rats with RME + LLLT). The rats were euthanized at 24 h, 48 h, and 7 days after RME, when the osteoblastic cells derived from the rats' midpalatal suture were explanted. These cells were cultured for periods up to 17 days, and then in vitro osteogenesis parameters and gene expression markers were evaluated. The cellular doubling time in the proliferative stage (3-7 days) was decreased in cultured cells harvested from the midpalatal suture at 24 and 48 h after RME + LLLT, as indicated by the increased growth of the cells in a culture. Alkaline phosphatase activity at days 7 and 14 of the culture was increased by LLLT in cells explanted from the midpalatal suture at 24 and 48 h and 7 days after RME. The mineralization at day 17 was increased by LLLT after RME in all periods. Results from the real-time PCR demonstrated that cells harvested from the LLLT after RME group showed higher levels of ALP, Runx2, osteocalcin, type I collagen, and bone sialoprotein mRNA than control cells. More pronounced effects on ALP activity, mineralization, and gene expression of bone markers were observed at 48 h after RME and LLLT. These results indicate that the LLLT applied after RME is able to increase the proliferation and the expression of an osteoblastic phenotype in cells derived from the midpalatal suture.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gossypol, a binaphthalene compound, possesses male infertility effects. However, its mechanism of action and effects on somatic cells are not yet understood. The purpose of this study was to examine the effects of gossypol on mammalian cell growth and DNA replication, using tissue culture cells (HeLa) as an in vivo model.^ Gossypol inhibited DNA synthesis in HeLa cells at low doses, without affecting RNA or protein synthesis. This caused cells to accumulate in S phase without affecting cells in other phases of the cell cycle. The inhibition of DNA synthesis was both dose- and time-dependent. This irreversible block was associated with a decrease in HeLa plating efficiency. Gossypol did bind to DNA but did not measurably affect its ability to serve as a template for DNA polymerase $\alpha$, the major replicative enzyme. Only in the absence of serum could gossypol induce single-strand DNA breaks in HeLa cells; no DNA-DNA or DNA-protein crosslinks were formed.^ Gossypol exhibited dose-dependent inhibition of a number of eukaryotic and prokaryotic replicative DNA polymerases both in vitro and in vivo. This inhibition was kinetically non-competitive with respect to the DNA template and dNTP substrates. Both a filter binding assay and polyacrylamide gel electrophoresis were used to study gossypol binding to DNA polymerase. Inhibition resulted from drug binding to two adjacent amino acid residues on the enzyme. Binding was found to be irreversible and mediated through either non-covalent interactions or by Schiff's base formation between the aldehyde groups of gossypol and the $\varepsilon$-NH$\sb2$ groups of amino acid residues on the polymerase. Structure-function studies using eleven gossypol derivatives revealed that both aldehyde and hydroxyl groups function independently to effect inhibition of DNA polymerase and DNA replication. The activities of DNA polymerase $\beta$ and ribonucleotide reductase were also inhibited by increasing gossypol concentrations.^ These studies demonstrate that the gossypol-mediated inhibition of DNA replication is due in part to inhibition of key replicative enzymes, such as DNA polymerase $\alpha$. The study of DNA polymerase may serve as a model for the interaction of enzymes with gossypol, a drug which may prove useful as a chemotherapeutic agent. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electrical synapses formed of the gap junction protein Cx36 show a great deal of functional plasticity, much dependent on changes in phosphorylation state of the connexin. However, gap junction turnover may also be important for regulating cell-cell communication, and turnover rates of Cx36 have not been studied. Connexins have relatively fast turnover rates, with short half-lives measured to be 1.5 to 3.5 hours in pulse-chase analyses of connexins (Cx26 and Cx43) in tissue culture cells and whole organs. We utilized HaloTag technology to study the turnover rate of Cx36 in transiently transfected HeLa cells. The HaloTag protein forms irreversible covalent bonds with chloroalkane ligands, allowing pulse-chase experiments to be performed very specifically. The HaloTag open reading frame was inserted into an internal site in the C-terminus of Cx36 designed not to disrupt the regulatory phosphorylation sites and not to block the C-terminal PDZ interaction motif. Functional properties of Cx36-Halo were assessed by Neurobiotin tracer coupling, live cell imaging, and immunostaining. For the pulse-chase study, transiently transfected HeLa cells were pulse labeled with Oregon Green (OG) HaloTag ligand and chase labeled at various times with tetramethylrhodamine (TMR) HaloTag ligand. Cx36-Halo formed large junctional plaques at sites of contact between transfected HeLa cells and was also contained in a large number of intracellular vesicles. The Cx36-Halo transfected HeLa cells supported Neurobiotin tracer coupling that was regulated by activation and inhibition of PKA in the same manner as wild-type Cx36 transfected cells. In the pulse-chase study, junctional protein labeled with the pulse ligand (OG) was gradually replaced by newly synthesized Cx36 labeled with the chase ligand (TMR). The half-life for turnover of protein in junctional plaques was 2.8 hours. Treatment of the pulse-labeled cells with Brefeldin A (BFA) prevented the addition of new connexins to junctional plaques, suggesting that the assembly of Cx36 into gap junctions involves the traditional ER-Golgi-TGN-plasma membrane pathway. In conclusion, Cx36-Halo is functional and has a turnover rate in HeLa cells similar to that of other connexins that have been studied. This turnover rate is likely too slow to contribute substantially to short-term changes in coupling of neurons driven by transmitters such as dopamine, which take minutes to achieve. However, turnover may contribute to longer-term changes in coupling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many neurons of the central nervous system display multiple high voltage-activated Ca2+ currents, pharmacologically classified as L-, N-, P-, Q-, and R-type. Of these current types, the R-type is the least understood. The leading candidate for the molecular correlate of R-type currents in cerebellar granule cells is the α1E subunit, which yields Ca2+ currents very similar to the R-type when expressed in heterologous systems. As a complementary approach, we tested whether antisense oligonucleotides against α1E could decrease the expression of R-type current in rat cerebellar granule neurons in culture. Cells were supplemented with either antisense or sense oligonucleotides and whole-cell patch clamp recordings were obtained after 6–8 days in vitro. Incubation with α1E antisense oligonucleotide caused a 52.5% decrease in the peak R-type current density, from −10 ± 0.6 picoamperes/picofarad (pA/pF) (n = 6) in the untreated controls to −4.8 ± 0.8 pA/pF (n = 11) (P < 0.01). In contrast, no significant changes in the current expression were seen in sense oligonucleotide-treated cells (−11.3 ± 3.2 pA/pF). The specificity of the α1E antisense oligonucleotides was supported by the lack of change in estimates of the P/Q current amplitude. Furthermore, antisense and sense oligonucleotides against α1A did not affect R-type current expression (−11.5 ± 1.7 and −11.7 ± 1.7 pA/pF, respectively), whereas the α1A antisense oligonucleotide significantly reduced whole cell currents under conditions in which P/Q current is dominant. Our results support the hypothesis that members of the E class of α1 subunits support the high voltage-activated R-type current in cerebellar granule cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The oocyte nuclear antigen of the monoclonal antibody 32-5B6 of Xenopus laevis is subject to regulated nuclear translocation during embryogenesis. It is distributed in the cytoplasm during oocyte maturation, where it remains during cleavage and blastula stages, before it gradually reaccumulates in the nuclei during gastrulation. We have now identified this antigen to be the enzyme S-adenosylhomocysteine hydrolase (SAHH). SAHH is the only enzyme that cleaves S-adenosylhomocysteine, a reaction product and an inhibitor of all S-adenosylmethionine-dependent methylation reactions. We have compared the spatial and temporal patterns of nuclear localization of SAHH and of nuclear methyltransferase activities during embryogenesis and in tissue culture cells. Nuclear localization of Xenopus SAHH did not temporally correlate with DNA methylation. However, we found that SAHH nuclear localization coincides with high rates of mRNA synthesis, a subpopulation colocalizes with RNA polymerase II, and inhibitors of SAHH reduce both methylation and synthesis of poly(A)+ RNA. We therefore propose that accumulation of SAHH in the nucleus may be required for efficient cap methylation in transcriptionally active cells. Mutation analysis revealed that the C terminus and the N terminus are both required for efficient nuclear translocation in tissue culture cells, indicating that more than one interacting domain contributes to nuclear accumulation of Xenopus SAHH.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Includes bibliographies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction : La fécondation in vitro est de mieux en mieux connue et en amélioration constante, cependant les taux d’implantation et de grossesse sont encore bas (environ 35% par fécondation in vitro). Un des enjeux de l’amélioration de la fécondation in vitro est le développement embryonnaire et l’implantation. Pour cela, la co-culture des embryons sur un tapis de cellules endométriales maternelles autologues peut être utilisée pour améliorer le développement embryonnaire (taux d’embryon se développant jusqu’à J5 : blastocyste) et l’implantation. L’objectif de l’étude est d’étudier le lien entre la qualité du tapis cellulaire et le développement embryonnaire. Matériel et méthodes : Cette étude est une sous analyse de l’essai clinique randomisé en double aveugle OvoGen, comparant le taux de blastulation et de grossesse dans deux groupes randomisés : le groupe étude, dans lequel les embryons se développent sur un tapis cellulaire endométrial maternel et le groupe contrôle, dans lequel les embryons sont cultivés dans du milieu conventionnel. Nous avons analysé la qualité des tapis cellulaire du groupe étude (confluence des cellules, taux de cellules épithéliales et vitalité des cellules stromales) par rapport au développement embryonnaire et au taux de grossesse. Résultats : 50 tapis de cellules endométriales maternelles et 291 embryons sur les puits ont été analysés de 2012 à 2015 à la clinique ovo (Montréal, Québec). La qualité des embryons n’était pas changée par la qualité des tapis (p=0,65 pour la confluence, p=0,25 pour le taux de glande et p=0,92 pour la viabilité des cellules). En revanche, le taux de grossesse augmentait quand la confluence diminuait (p=0,022) et lorsque la viabilité des cellules stromales augmentait (p=0,001). De plus, la qualité des tapis était dépendante de la date de la biopsie : la biopsie faite à J7 après l’ovulation permettait une meilleure qualité de puits (confluence augmentée, p=0,045, taux de glande augmenté p=0,004 et viabilité stromales augmentée p=0,001) que la biopsie faite à J5 post ovulation. Discussion : Aucune des nombreuses études sur la co-culture ne porte sur la qualité des tapis cellulaire. Il est intéressant de noter que le taux de grossesse augmente avec la diminution de la confluence et l’augmentation de la viabilité des cellules stromales dans les puits contenant les embryons transférés. Comme il a déjà été démontré, (1)le jour de la biopsie endométriale influe sur la qualité du tapis cellulaire en coculture et pour que celui-ci soit de bonne qualité, il faut que l’endomètre soit réceptif (après J19 du cycle). Conclusion : Nous avons montré que la qualité des tapis cellulaires dépendait du jour de la biopsie d’endomètre et que cette qualité pouvait influencer le bénéfice de la co-culture. Il serait intéressant d’étudier la réceptivité de l’endomètre au moment de la biopsie avant utilisation des cellules en co-culture pour optimiser la qualité du tapis cellulaire.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction : La fécondation in vitro est de mieux en mieux connue et en amélioration constante, cependant les taux d’implantation et de grossesse sont encore bas (environ 35% par fécondation in vitro). Un des enjeux de l’amélioration de la fécondation in vitro est le développement embryonnaire et l’implantation. Pour cela, la co-culture des embryons sur un tapis de cellules endométriales maternelles autologues peut être utilisée pour améliorer le développement embryonnaire (taux d’embryon se développant jusqu’à J5 : blastocyste) et l’implantation. L’objectif de l’étude est d’étudier le lien entre la qualité du tapis cellulaire et le développement embryonnaire. Matériel et méthodes : Cette étude est une sous analyse de l’essai clinique randomisé en double aveugle OvoGen, comparant le taux de blastulation et de grossesse dans deux groupes randomisés : le groupe étude, dans lequel les embryons se développent sur un tapis cellulaire endométrial maternel et le groupe contrôle, dans lequel les embryons sont cultivés dans du milieu conventionnel. Nous avons analysé la qualité des tapis cellulaire du groupe étude (confluence des cellules, taux de cellules épithéliales et vitalité des cellules stromales) par rapport au développement embryonnaire et au taux de grossesse. Résultats : 50 tapis de cellules endométriales maternelles et 291 embryons sur les puits ont été analysés de 2012 à 2015 à la clinique ovo (Montréal, Québec). La qualité des embryons n’était pas changée par la qualité des tapis (p=0,65 pour la confluence, p=0,25 pour le taux de glande et p=0,92 pour la viabilité des cellules). En revanche, le taux de grossesse augmentait quand la confluence diminuait (p=0,022) et lorsque la viabilité des cellules stromales augmentait (p=0,001). De plus, la qualité des tapis était dépendante de la date de la biopsie : la biopsie faite à J7 après l’ovulation permettait une meilleure qualité de puits (confluence augmentée, p=0,045, taux de glande augmenté p=0,004 et viabilité stromales augmentée p=0,001) que la biopsie faite à J5 post ovulation. Discussion : Aucune des nombreuses études sur la co-culture ne porte sur la qualité des tapis cellulaire. Il est intéressant de noter que le taux de grossesse augmente avec la diminution de la confluence et l’augmentation de la viabilité des cellules stromales dans les puits contenant les embryons transférés. Comme il a déjà été démontré, (1)le jour de la biopsie endométriale influe sur la qualité du tapis cellulaire en coculture et pour que celui-ci soit de bonne qualité, il faut que l’endomètre soit réceptif (après J19 du cycle). Conclusion : Nous avons montré que la qualité des tapis cellulaires dépendait du jour de la biopsie d’endomètre et que cette qualité pouvait influencer le bénéfice de la co-culture. Il serait intéressant d’étudier la réceptivité de l’endomètre au moment de la biopsie avant utilisation des cellules en co-culture pour optimiser la qualité du tapis cellulaire.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, cell sheets comprising multilayered porcine bone marrow stromal cells (BMSC) were assembled with fully interconnected scaffolds made from medical-grade polycaprolactone–calcium phosphate (mPCL–CaP), for the engineering of structural and functional bone grafts. The BMSC sheets were harvested from culture flasks and wrapped around pre-seeded composite scaffolds. The layered cell sheets integrated well with the scaffold/cell construct and remained viable, with mineralized nodules visible both inside and outside the scaffold for up to 8 weeks culture. Cells within the constructs underwent classical in vitro osteogenic differentiation with the associated elevation of alkaline phosphatase activity and bone-related protein expression. In vivo, two sets of cell-sheet-scaffold/cell constructs were transplanted under the skin of nude rats. The first set of constructs (554mm3) were assembled with BMSC sheets and cultured for 8 weeks before implantation. The second set of constructs (10104mm3) was implanted immediately after assembly with BMSC sheets, with no further in vitro culture. For both groups, neo cortical and well-vascularised cancellous bone were formed within the constructs with up to 40% bone volume. Histological and immunohistochemical examination revealed that neo bone tissue formed from the pool of seeded BMSC and the bone formation followed predominantly an endochondral pathway, with woven bone matrix subsequently maturing into fully mineralized compact bone; exhibiting the histological markers of native bone. These findings demonstrate that large bone tissues similar to native bone can be regenerated utilizing BMSC sheet techniques in conjunction with composite scaffolds whose structures are optimized from a mechanical, nutrient transport and vascularization perspective.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose the progressive mechanical expansion of cell-derived tissue analogues as a novel, growth-based approach to in vitro tissue engineering. The prevailing approach to producing tissue in vitro is to culture cells in an exogenous “scaffold” that provides a basic structure and mechanical support. This necessarily pre-defines the final size of the implantable material, and specific signals must be provided to stimulate appropriate cell growth, differentiation and matrix formation. In contrast, surgical skin expansion, driven by increments of stretch, produces increasing quantities of tissue without trauma or inflammation. This suggests that connective tissue cells have the innate ability to produce growth in response to elevated tension. We posit that this capacity is maintained in vitro, and that order-of-magnitude growth may be similarly attained in self-assembling cultures of cells and their own extracellular matrix. The hypothesis that growth of connective tissue analogues can be induced by mechanical expansion in vitro may be divided into three components: (1) tension stimulates cell proliferation and extracellular matrix synthesis; (2) the corresponding volume increase will relax the tension imparted by a fixed displacement; (3) the repeated application of static stretch will produce sustained growth and a tissue structure adapted to the tensile loading. Connective tissues exist in a state of residual tension, which is actively maintained by resident cells such as fibroblasts. Studies in vitro and in vivo have demonstrated that cellular survival, reproduction, and matrix synthesis and degradation are regulated by the mechanical environment. Order-of-magnitude increases in both bone and skin volume have been achieved clinically through staged expansion protocols, demonstrating that tension-driven growth can be sustained over prolonged periods. Furthermore, cell-derived tissue analogues have demonstrated mechanically advantageous structural adaptation in response to applied loading. Together, these data suggest that a program of incremental stretch constitutes an appealing way to replicate tissue growth in cell culture, by harnessing the constituent cells’ innate mechanical responsiveness. In addition to offering a platform to study the growth and structural adaptation of connective tissues, tension-driven growth presents a novel approach to in vitro tissue engineering. Because the supporting structure is secreted and organised by the cells themselves, growth is not restricted by a “scaffold” of fixed size. This also minimises potential adverse reactions to exogenous materials upon implantation. Most importantly, we posit that the growth induced by progressive stretch will allow substantial volumes of connective tissue to be produced from relatively small initial cell numbers.