Effects of gossypol on DNA replication in mammalian cells
Data(s) |
01/01/1988
|
---|---|
Resumo |
Gossypol, a binaphthalene compound, possesses male infertility effects. However, its mechanism of action and effects on somatic cells are not yet understood. The purpose of this study was to examine the effects of gossypol on mammalian cell growth and DNA replication, using tissue culture cells (HeLa) as an in vivo model.^ Gossypol inhibited DNA synthesis in HeLa cells at low doses, without affecting RNA or protein synthesis. This caused cells to accumulate in S phase without affecting cells in other phases of the cell cycle. The inhibition of DNA synthesis was both dose- and time-dependent. This irreversible block was associated with a decrease in HeLa plating efficiency. Gossypol did bind to DNA but did not measurably affect its ability to serve as a template for DNA polymerase $\alpha$, the major replicative enzyme. Only in the absence of serum could gossypol induce single-strand DNA breaks in HeLa cells; no DNA-DNA or DNA-protein crosslinks were formed.^ Gossypol exhibited dose-dependent inhibition of a number of eukaryotic and prokaryotic replicative DNA polymerases both in vitro and in vivo. This inhibition was kinetically non-competitive with respect to the DNA template and dNTP substrates. Both a filter binding assay and polyacrylamide gel electrophoresis were used to study gossypol binding to DNA polymerase. Inhibition resulted from drug binding to two adjacent amino acid residues on the enzyme. Binding was found to be irreversible and mediated through either non-covalent interactions or by Schiff's base formation between the aldehyde groups of gossypol and the $\varepsilon$-NH$\sb2$ groups of amino acid residues on the polymerase. Structure-function studies using eleven gossypol derivatives revealed that both aldehyde and hydroxyl groups function independently to effect inhibition of DNA polymerase and DNA replication. The activities of DNA polymerase $\beta$ and ribonucleotide reductase were also inhibited by increasing gossypol concentrations.^ These studies demonstrate that the gossypol-mediated inhibition of DNA replication is due in part to inhibition of key replicative enzymes, such as DNA polymerase $\alpha$. The study of DNA polymerase may serve as a model for the interaction of enzymes with gossypol, a drug which may prove useful as a chemotherapeutic agent. ^ |
Identificador |
http://digitalcommons.library.tmc.edu/dissertations/AAI8826285 |
Idioma(s) |
EN |
Publicador |
DigitalCommons@The Texas Medical Center |
Fonte |
Texas Medical Center Dissertations (via ProQuest) |
Palavras-Chave | #Biology, General |
Tipo |
text |