895 resultados para Cultivar Improvement
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To better understand agronomic and end-use quality in wheat (Triticum aestivum L.) we developed a population containing 154 F6:8 recombinant inbred lines (RILs) from the cross TAM107-R7/Arlin. The parental lines and RILs were phenotyped at six environments in Nebraska and differed for resistance to Wheat soilborne mosaic virus (WSBMV), morphological, agronomic, and end-use quality traits. Additionally, a 2300 cM genome-wide linkage map was created for quantitative trait loci (QTL) analysis. Based on our results across multiple environments, the best RILs could be used for cultivar improvement. The population and marker data are publicly available for interested researchers for future research. The population was used to determine the effect of WSBMV on agronomic and end-use quality and for the mapping of a resistance locus. Results from two infected environments showed that all but two agronomic traits were significantly affected by the disease. Specifically, the disease reduced grain yield by 30% of susceptible RILs and they flowered 5 d later and were 11 cm shorter. End-use quality traits were not negatively affected but flour protein content was increased in susceptible RILs. The resistance locus SbmTmr1 mapped to 27.1 cM near marker wPt-5870 on chromosome 5DL using ELISA data. Finally, we investigated how WSBMV affected QTL detection in the population. QTLs were mapped at two WSBMV infected environments, four uninfected environments, and in the resistant and susceptible RIL subpopulations in the infected environments. Fifty-two significant (LOD≥3) QTLs were mapped in RILs at uninfected environments. Many of the QTLs were pleiotropic or closely linked at 6 chromosomal regions. Forty-seven QTLs were mapped in RILs at WSBMV infected environments. Comparisons between uninfected and infected environments identified 20 common QTLs and 21 environmentally specific QTLs. Finally, 24 QTLs were determined to be affected by WSBMV by comparing the subpopulations in QTL analyses within the same environment. The comparisons were statistically validated using marker by disease interactions. These results showed that QTLs can be affected by WSBMV and careful interpretation of QTL results is needed where biotic stresses are present. Finally, beneficial QTLs not affected by WSBMV or the environment are candidates for marker-assisted selection.
Resumo:
In the past 20 years, the rice-breeding program in Thailand had little success in developing new cultivars to replace Kao Dawk Mali 105 (KDML105) and Kao Khor 6 (RD6) for the tainted lowland rice environments. The main reason for the poor adoption of new cultivars by farmers is the susceptibility to diseases and unacceptable grain qualities. The conventional breeding program also takes at least 15 years from initial crossing to the release of new cultivars. A new breeding strategy can be established to shorten the period for cultivar improvement by using marker-assisted selection (MAS), rapid generations advance (RGA), and early generation testing in multi-locations for grain yield and qualities. Four generation of MAS backcross breeding were conducted to transfer genes and QTL for bacterial blight resistance (BLB), submergence tolerance (SUB), brown plant hopper resistance (BPH) and blast resistance (BL) into KDML105. Selected backcross lines, introgressed with target gene/QTL, were tolerant to SUB and resistant to BLB, BPH and BL. The agronomic performance and grain quality of these lines were as good as or better than KDML105.
Resumo:
The phenology of 11 diverse accessions of wild mungbean was observed under natural and artificial photoperiod - temperature conditions, in order to examine whether genotypic differences might be attributed to adaptive responses to photo-thermal conditions. There was large variation in phenological response among accessions and across environments, much of which was due to differences in the duration of the pre-flowering phase. Accessions that flowered earlier tended to flower for longer, apart from 2 earlier flowering, inland Australian lines that were also earlier maturing. The patterns of response in time from sowing to flowering over environment were consistent with quantitative short-day photoperiodic adaptation, a conclusion supported by the effects of artificial day-length extension and by 'goodness of fit' of the observed responses to standard models relating rate of development to photoperiod and temperature. The fitted models indicated that rate of development towards flowering was hastened by warmer temperatures, and delayed by longer day lengths, with differential sensitivity between accessions to both factors. The models also suggested that photoperiod was more important for accessions collected closer to the equator, which were generally later flowering as a consequence. Conversely, temperature was relatively more important in lines from higher latitudes. Modelling also suggested that the period from first flowering to maturity was sensitive to photoperiod and temperature. Again, longer days appeared to prolong growth and delay maturity. However, cooler temperatures accelerated rather than slowed maturity, by suppressing further vegetative growth. The variation observed indicated that there is considerable scope for using the wild population to broaden the adaptation of cultivated mungbean. In particular, the unusual response of a late-flowering, photoperiod-insensitive accession warrants further study to establish whether the wild population contains a unique 'long juvenile' trait analogous to that being used for improving phenological adaptation in soybean.
Resumo:
The leaf growth, dry matter production, and seed yield of 11 wild mungbean ( Vigna radiata ssp. sublobata) accessions of diverse geographic origin were observed under natural and artificial photoperiod temperature conditions, to determine the extent to which genotypic differences could be attributed to adaptive responses to photo-thermal environment. Environments included serial sowings in the field in SE Queensland, complemented by artificial photoperiod extension and controlled-environment growth rooms. Photo-thermal environment influenced leaf growth, total dry matter production ( TDM), and seed yield directly, through effects of ( mainly cool) temperature on growth, and indirectly, through effects on phenology. In terms of direct effects, leaf production, leaf expansion, and leaf area were all sensitive to temperature, with implied base temperatures higher than usually observed in cultivated mungbean ( V. radiata ssp. radiata). Genotypic sensitivity to temperature varied systematically with accession provenance and appeared to be of adaptive significance. In terms of the indirect effects of photo-thermal environment, genotypic and environmental effects on TDM were positively related to changes in total growth duration, and harvest index was negatively related to the period from sowing to flowering, similar to cultivated mungbean. However, seed yield was positively related to the duration of reproductive growth, reflecting the indeterminate growth habit of the wild accessions. As a consequence, the wild accessions are more responsive to favourable environments than typically observed in cultivated mungbean, which is determinate in habit. It is suggested that the introduction of the indeterminate trait into mungbean from the wild subspecies would increase the responsiveness of mungbean to favourable environments, analogous to that of black gram ( V. mungo). Although the wild subspecies appeared more sensitive to cool temperature than cultivated mungbean, it may provide a source of tolerance to the warmer temperatures experienced during the wet season in the tropics.
Resumo:
In the past 20 years, the rice-breeding program in Thailand had little success in developing new cultivars to replace Kao Dawk Mali 105 (KDML105) and Kao Khor 6 (RD6). Main reason is a poor adoption of new cultivars by farmers due to poor adaptation of new cultivars to the rainfed environments, susceptibility to diseases and insect pests and unacceptable grain qualities. The conventional breeding program also takes at least 15 years for releasing new cultivars. New breeding strategy can be established to shorten period for cultivar improvement by using marker-assisted selection (MAS), rapid generations advance (RGA), early generation testing in multi-locations for grain yield and qualities. Four generation of MAS backcross breeding were conducted to transfer gene and QTL for bacterial blight resistance (BLB), submergence tolerance (SUB), brown planthopper resistance (BPH) and blast resistance (BL) into KDML105. Selected backcross lines, introgressed with target gene/QTL, were tolerant to SUB and resistant to BLB, BPH and BL. The agronomic performance and grain quality of these lines were as good as or better than KDML105.
Resumo:
Genotype-environment interactions (GEI) limit genetic gain for complex traits such as tolerance to drought. Characterization of the crop environment is an important step in understanding GEI. A modelling approach is proposed here to characterize broadly (large geographic area, long-term period) and locally (field experiment) drought-related environmental stresses, which enables breeders to analyse their experimental trials with regard to the broad population of environments that they target. Water-deficit patterns experienced by wheat crops were determined for drought-prone north-eastern Australia, using the APSIM crop model to account for the interactions of crops with their environment (e.g. feedback of plant growth on water depletion). Simulations based on more than 100 years of historical climate data were conducted for representative locations, soils, and management systems, for a check cultivar, Hartog. The three main environment types identified differed in their patterns of simulated water stress around flowering and during grain-filling. Over the entire region, the terminal drought-stress pattern was most common (50% of production environments) followed by a flowering stress (24%), although the frequencies of occurrence of the three types varied greatly across regions, years, and management. This environment classification was applied to 16 trials relevant to late stages testing of a breeding programme. The incorporation of the independently-determined environment types in a statistical analysis assisted interpretation of the GEI for yield among the 18 representative genotypes by reducing the relative effect of GEI compared with genotypic variance, and helped to identify opportunities to improve breeding and germplasm-testing strategies for this region.
Resumo:
A goiabeira (Psidium guajava L.) é uma espécie que vem se tornando de grande importância em diversas regiões do Brasil, principalmente no Estado de São Paulo, maior produtor nacional. Desde 1985, a UNESP/FCAV, Câmpus de Jaboticabal, vem desenvolvendo um programa de melhoramento genético da goiabeira, com o objetivo de obter plantas com boas características agronômicas e com frutos que possam ser destinados tanto à industrialização quanto ao consumo na forma de fruta fresca. Partindo-se de 219 plantas, oriundas de diversos cruzamentos, e após dez anos de avaliação, chegou-se à cultivar Século XXI, cujas principais características são: planta muito produtiva com ciclo precoce (130 dias da floração à colheita), frutos grandes, com polpa espessa, róseo-avermelhada, ótimo sabor e com poucas e pequenas sementes.
Resumo:
A protocol of selection, training and validation of the members of the panel for bread sensory analysis is proposed to assess the influence of wheat cultivar on the sensory quality of bread. Three cultivars of bread wheat and two cultivars of spelt wheat organically-grown under the same edaphoclimatic conditions were milled and baked using the same milling and baking procedure. Through the use of triangle tests, differences were identified between the five breads. Significant differences were found between the spelt breads and those made with bread wheat for the attributes ?crumb cell homogeneity? and ?crumb elasticity?. Significant differences were also found for the odor and flavor attributes, with the bread made with ?Espelta Navarra? being the most complex, from a sensory point of view. Based on the results of this study, we propose that sensory properties should be considered as breeding criteria for future work on genetic improvement.