970 resultados para Ct Scans
Resumo:
Objective: To analyze standardized uptake values (SUVs) using three different tube current intensities for attenuation correction on 18FNaF PET/CT scans. Materials and Methods: A total of 254 18F-NaF PET/CT studies were analyzed using 10, 20 and 30 mAs. The SUVs were calculated in volumes of interest (VOIs) drawn on three skeletal regions, namely, right proximal humeral diaphysis (RH), right proximal femoral diaphysis (RF), and first lumbar vertebra (LV1) in a total of 712 VOIs. The analyses covered 675 regions classified as normal (236 RH, 232 RF, and 207 LV1). Results: Mean SUV for each skeletal region was 3.8, 5.4 and 14.4 for RH, RF, and LV1, respectively. As the studies were grouped according to mAs value, the mean SUV values were 3.8, 3.9 and 3.7 for 10, 20 and 30 mAs, respectively, in the RH region; 5.4, 5.5 and 5.4 for 10, 20 and 30 mAs, respectively, in the RF region; 13.8, 14.9 and 14.5 for 10, 20 and 30 mAs, respectively, in the LV1 region. Conclusion: The three tube current values yielded similar results for SUV calculation.
Resumo:
This study evaluated whether measurements on conventional frontal radiographs are comparable with measurements on cone beam computed tomography (CBCT)-constructed frontal cephalometric radiographs taken from dry human skulls. CBCT scans and conventional frontal cephalometric radiographs were made of 40 dry skulls. With I-Cat Vision((R)) software, a cephalometric radiograph was constructed from the CBCT scan. Standard cephalometric software was used to identify landmarks and calculate ratios and angles. The same operator identified 10 landmarks on both types of cephalometric radiographs on all Images 5 times with a time-interval of 1 week. Intra-observer reliability was acceptable for all measurements. The reproducibility of the measurements on the frontal radiographs obtained from the CBCT scans was higher than those on conventional frontal radiographs. There is a statistically significant and clinically relevant difference between measurements on conventional and constructed frontal radiographs. There is a clinically relevant difference between angular measurements performed on conventional frontal cephalometric radiographs, compared with measurements on frontal cephalometric radiographs constructed from CBCT scans, owing to different positioning of patients in both devices. Positioning of the patient in the CBCT device appears to be an important factor in cases where a 2D projection of the 3D scan is made.
Resumo:
Image-based modeling is a popular approach to perform patient-specific biomechanical simulations. Accurate modeling is critical for orthopedic application to evaluate implant design and surgical planning. It has been shown that bone strength can be estimated from the bone mineral density (BMD) and trabecular bone architecture. However, these findings cannot be directly and fully transferred to patient-specific modeling since only BMD can be derived from clinical CT. Therefore, the objective of this study was to propose a method to predict the trabecular bone structure using a µCT atlas and an image registration technique. The approach has been evaluated on femurs and patellae under physiological loading. The displacement and ultimate force for femurs loaded in stance position were predicted with an error of 2.5% and 3.7%, respectively, while predictions obtained with an isotropic material resulted in errors of 7.3% and 6.9%. Similar results were obtained for the patella, where the strain predicted using the registration approach resulted in an improved mean squared error compared to the isotropic model. We conclude that the registration of anisotropic information from of a single template bone enables more accurate patient-specific simulations from clinical image datasets than isotropic model.
Resumo:
Purpose. To evaluate trends in the utilization of head, abdominal, thoracic and other body regions CTs in the management of victims of MVC at a level I trauma center from 1996 to 2006.^ Method. From the trauma registry, I identified patients involved in MVC's in a level I trauma center and categorized them into three age groups of 13-18, 19-55 and ≥56. I used International Classification of Disease (ICD-9-CM) codes to find the type and number of CTs examinations performed for each patient. I plotted the mean number of CTs per patient against year of admission to find the crude estimate of change in utilization pattern for each type of CT. I used logistic regression to assess whether repetitive CTs (≥ 2) for head, abdomen, thorax and other body regions were associated with age group and year of admission for MVC patients. I adjusted the estimates for gender, ethnicity, insurance status, mechanism and severity of injury, intensive care unit admission status, patient disposition (dead or alive) and year of admission.^ Results. Utilization of head, abdominal, thoracic and other body regions CTs significantly increased over 11-year period. Utilization of head CT was greatest in the 13-18 age group, and increased from 0.58 CT/patient in 1996 to 1.37 CT/patient in 2006. Abdominal CTs were more common in the ≥56+ age group, and increased from 0.33 CT/patient in 1996 to 0.72 CT/patient in 2006. Utilization of thoracic CTs was higher in the 56+ age group, and increased from 0.01 CT/patient in 1996 to 0.42 CT/patient in 2006. Utilization of other CTs did not change materially during the study period for adolescents, adults or older adults. In the multivariable analysis, after adjustment for potential confounders, repetitive head CTs significantly increased in the 13-18 age group (95% CI: 1.29-1.87, p=<0.001) relative to the 19-55 age group. Repetitive thoracic CT use was lower in adolescents (95% CI: 0.22-0.70, p=<0.001) relative to the 19-55 age group.^ Conclusion. There has been a substantial increase in the utilization of head, abdominal, thoracic and other CTs in the management of MVC patients. Future studies need to identify if increased utilization of CTs have resulted in better health outcome for these patients. ^
Resumo:
The quality of the image of 18F-FDG PET/CT scans in overweight patients is commonly degraded. This study evaluates, retrospectively, the relation between SNR, weight and dose injected in 65 patients, with a range of weights from 35 to 120 kg, with scans performed using the Biograph mCT using a standardized protocol in the Nuclear Medicine Department at Radboud University Medical Centre in Nijmegen, The Netherlands. Five ROI’s were made in the liver, assumed to be an organ of homogenous metabolism, at the same location, in five consecutive slices of the PET/CT scans to obtain the mean uptake (signal) values and its standard deviation (noise). The ratio of both gave us the Signal-to- Noise Ratio in the liver. With the help of a spreadsheet, weight, height, SNR and Body Mass Index were calculated and graphs were designed in order to obtain the relation between these factors. The graphs showed that SNR decreases as the body weight and/or BMI increased and also showed that, even though the dose injected increased, the SNR also decreased. This is due to the fact that heavier patients receive higher dose and, as reported, heavier patients have less SNR. These findings suggest that the quality of the images, measured by SNR, that were acquired in heavier patients are worst than thinner patients, even though higher FDG doses are given. With all this taken in consideration, it was necessary to make a new formula to calculate a new dose to give to patients and having a good and constant SNR in every patient. Through mathematic calculations, it was possible to reach to two new equations (power and exponential), which would lead to a SNR from a scan made with a specific reference weight (86 kg was the considered one) which was independent of body mass. The study implies that with these new formulas, patients heavier than the reference weight will receive higher doses and lighter patients will receive less doses. With the median being 86 kg, the new dose and new SNR was calculated and concluded that the quality of the image remains almost constant as the weight increases and the quantity of the necessary FDG remains almost the same, without increasing the costs for the total amount of FDG used in all these patients.
Resumo:
The inferior alveolar nerve (IAN) lies within the mandibular canal, named inferior alveolar canal in literature. The detection of this nerve is important during maxillofacial surgeries or for creating dental implants. The poor quality of cone-beam computed tomography (CBCT) and computed tomography (CT) scans and/or bone gaps within the mandible increase the difficulty of this task, posing a challenge to human experts who are going to manually detect it and resulting in a time-consuming task.Therefore this thesis investigates two methods to automatically detect the IAN: a non-data driven technique and a deep-learning method. The latter tracks the IAN position at each frame leveraging detections obtained with the deep neural network CenterNet, fined-tuned for our task, and temporal and spatial information.
Resumo:
Background: Concerns exist regarding the effect of radiation dose from paediatric pelvic CT scans and the potential later risk of radiation-induced neoplasm and teratogenic outcomes in these patients. Objective: To assess the diagnostic quality of CT images of the paediatric pelvis using either reduced mAs or increased pitch compared with standard settings. Materials and methods: A prospective study of pelvic CT scans of 105 paediatric patients was performed using one of three protocols: (1) 31 at a standard protocol of 200 mA with rotation time of 0.75 s at 120 kVp and a pitch factor approximating 1.4; (2) 31 at increased pitch factor approaching 2 and 200 mA; and (3) 43 at a reduced setting of 100 mA and a pitch factor of 1.4. All other settings remained the same in all three groups. Image quality was assessed by radiologists blinded to the protocol used in each scan. Results: No significant difference was found between the quality of images acquired at standard settings and those acquired at half the standard mAs. The use of increased pitch factor resulted in a higher proportion of poor images. Conclusions: Images acquired at 120 kVp using 75 mAs are equivalent in diagnostic quality to those acquired at 150 mAs. Reduced settings can provide useful imaging of the paediatric pelvis and should be considered as a standard protocol in these situations.
Resumo:
Studies evaluating radiologic aspects, local complications, and structural alterations of the paranasal sinus in patients with mucosal leishmaniasis (ML) are lacking The aim of this study was to analyze alterations of the paranasal sinuses in patients with ML by using computed tomography (CT) scans This prospective study evaluated 26 patients in Brazil with ML Nom December 2008 through June 2009 All patients underwent CT scans of the paranasal sinuses Paranasal thickening was observed in 25 patients (96%) Nasal perforation was observed in 17 patients (65%) Those patients who received re-treatment showed more abnormalities on CT scan than cured patients (P < 0 05) Complications of ML are not limited to the nasal mucosa but extend to the paranasal sinuses. Mucosa! thickening. pacified air cells. bony remodeling, and bony thickening caused by inflammatory steals of the sinus cavity walls are CT findings suggestive of chronic sinusitis
Resumo:
Purpose: To evaluate the changes over time in the pattern and extent of parenchymal abnormalities in asbestos-exposed workers after cessation of exposure and to compare 3 proposed semiquantitative methods with a careful side-by-side comparison of the initial and the follow-Lip computed tomography (CT) images. Materials and Methods: The study included 52 male asbestos workers (mean age SD, 62.2y +/- 8.2) who had baseline high-resolution CT after cessation of exposure and follow-up CT 3 to 5 years later. Two independent thoracic radiologists quantified the findings according to the scoring systems proposed by Huuskonen, Gamsu, and Sette and then did a side-by-side comparison of the 2 sets of scans without awareness of the dates of the CT scans. Results: There was no difference in the prevalence of the 2 most common parenchymal abnormalities (centrilobular small dotlike or branching opacities and interstitial lines) between the initial and follow-up CT scans. Honeycombing (20%) and traction bronchiectasis and bronchiolectasis (50%) were seen more commonly on the follow-up CT than on the initial examination (10% and 33%, respectively) (P = 0.01). Increased extent of parenchymal abnormalities was evident on side-by-side comparison in 42 (81%) patients but resulted in an increase in score in at least 1 semiquantitative system in only 16 (31%) patients (all P > 0.01, signed test). Conclusions: The majority of patients with previous asbestos exposure show evidence of progression of disease on CT at 3 to 5 years follow-up but this progression is usually not detected by the 3 proposed semiquantitative scoring schemes.
Resumo:
Background and aims: Hip fracture is a devastating event in terms of outcome in the elderly, and the best predictor of hip fracture risk is hip bone density, usually measured by dual X-ray absorptiometry (DXA). However, bone density can also be ascertained from computerized tomography (CT) scans, and mid-thigh scans are frequently employed to assess the muscle and fat composition of the lower limb. Therefore, we examined if it was possible to predict hip bone density using mid-femoral bone density. Methods: Subjects were 803 ambulatory white and black women and men, aged 70-79 years, participating in the Health, Aging and Body Composition (Health ABC) Study. Bone mineral content (BMC, g) and volumetric bone mineral density (vBMD, mg/cm(3)) of the mid-femur were obtained by CT, whereas BMC and areal bone mineral density (aBMD, g/cm(2)) of the hip (femoral neck and trochanter) were derived from DXA. Results: In regression analyses stratified by race and sex, the coefficient of determination was low with mid-femoral BMC, explaining 6-27% of the variance in hip BMC, with a standard error of estimate (SEE) ranging from 16 to 22% of the mean. For mid-femur vBMD, the variance explained in hip aBMD was 2-17% with a SEE ranging from 15 to 18%. Adjusting aBMD to approximate volumetric density did not improve the relationships. In addition, the utility of fracture prediction was examined. Forty-eight subjects had one or more fractures (various sites) during a mean follow-up of 4.07 years. In logistic regression analysis, there was no association between mid-femoral vBMD and fracture (all fractures), whereas a 1 SD increase in hip BMD was associated with reduced odds for fracture of similar to60%. Conclusions: These results do not support the use of CT-derived mid-femoral vBMD or BMC to predict DXA-measured hip bone mineral status, irrespective of race or sex in older adults. Further, in contrast to femoral neck and trochanter BMD, mid-femur vBMD was not able to predict fracture (all fractures). (C) 2003, Editrice Kurtis.
Resumo:
Cranial CT scans of eleven immunocompetent children with central nervous system (CNS) infection due to Cryptococcus neoformans var. gattii were retrospectively reviewed. These children had an average age of 8.8 years and positive culture for C. n. var. gattii in cerebrospinal fluid. The most common signs and symptoms were headache, fever, nuchal rigidity, nausea and vomiting. No normal cranial CT was detected in any patient. Hypodense nodules were observed in all patients . The remaining scan abnormalities were as follows: nine had diffuse atrophy, six had hydrocephalus, and five had hydrocephalus coexistent with diffuse atrophy.
Resumo:
Objective: Postmortem radiology had in recent years appeared in the field of forensic medicine and is now considered by some authors as a good replacement for conventional autopsy and by others as a complementary examination. Although postmortem CT radiological imaging is very useful in demonstrating traumatic lesions, its utility is still quite limited in the cardiovascular field. This limitation could be minimized by the introduction of postmortem angiography. At the University Center of Legal Medicine of Lausanne, CT scans and postmortem multiphase CTangiography are used in cases with a suspicion of ischemic heart disease.Method: The goal of this presentation is to demonstrate some correlations between postmortem CT, CTangiography and conventional autopsy examination in cases of ischemic heart disease.Results: We observed that the native CT scan can show only some pathological findings as cardiac tamponade and calcifications of coronary arteries. However, postmortem angiography allows a better visualization of coronary arteries and evaluation of stenosis and occlusion as well as better imaging of soft tissue.Conclusion: The interpretation of postmortem modern radiology is a new field for both forensic pathologists and radiologists who have to learn to read the postmortem modified images. The information obtained from both parties can help to further the understanding of CT and CT angiography in postmortem cases.
Resumo:
RATIONALE AND OBJECTIVES: Dose reduction may compromise patients because of a decrease of image quality. Therefore, the amount of dose savings in new dose-reduction techniques needs to be thoroughly assessed. To avoid repeated studies in one patient, chest computed tomography (CT) scans with different dose levels were performed in corpses comparing model-based iterative reconstruction (MBIR) as a tool to enhance image quality with current standard full-dose imaging. MATERIALS AND METHODS: Twenty-five human cadavers were scanned (CT HD750) after contrast medium injection at different, decreasing dose levels D0-D5 and respectively reconstructed with MBIR. The data at full-dose level, D0, have been additionally reconstructed with standard adaptive statistical iterative reconstruction (ASIR), which represented the full-dose baseline reference (FDBR). Two radiologists independently compared image quality (IQ) in 3-mm multiplanar reformations for soft-tissue evaluation of D0-D5 to FDBR (-2, diagnostically inferior; -1, inferior; 0, equal; +1, superior; and +2, diagnostically superior). For statistical analysis, the intraclass correlation coefficient (ICC) and the Wilcoxon test were used. RESULTS: Mean CT dose index values (mGy) were as follows: D0/FDBR = 10.1 ± 1.7, D1 = 6.2 ± 2.8, D2 = 5.7 ± 2.7, D3 = 3.5 ± 1.9, D4 = 1.8 ± 1.0, and D5 = 0.9 ± 0.5. Mean IQ ratings were as follows: D0 = +1.8 ± 0.2, D1 = +1.5 ± 0.3, D2 = +1.1 ± 0.3, D3 = +0.7 ± 0.5, D4 = +0.1 ± 0.5, and D5 = -1.2 ± 0.5. All values demonstrated a significant difference to baseline (P < .05), except mean IQ for D4 (P = .61). ICC was 0.91. CONCLUSIONS: Compared to ASIR, MBIR allowed for a significant dose reduction of 82% without impairment of IQ. This resulted in a calculated mean effective dose below 1 mSv.
Resumo:
BACKGROUND: Posttransplant lymphoproliferative disease (PTLD) is, aside skin cancer, the most common malignancy occurring after solid organ transplant in adults. Fluorodeoxyglucose (FDG) positron emission tomography (PET) has proved useful in the management of lymphomas. METHODS: We report our experience with the use of FDG-PET inline with computed tomography (CT) scanning in the management of four transplant recipients with histologically confirmed PTLD, including three monomorphic PTLDs and one polymorphic PTLD. RESULTS: FDG-PET/CT scan at diagnosis showed increased FDG uptake in all examined PTLD lesions, and the disease was upstaged on the basis of FDG-PET/CT scan results over conventional CT scanning in one patient. At the end of treatment, PET/CT scans no longer demonstrated FDG uptake in the original PTLD lesions in all patients. Complete remission of disease persisted for at least 1 year after diagnosis in all. CONCLUSIONS: Our results strongly support that FDG-PET scanning is highly specific for diagnosis and follow-up of PTLD. The clinical relevance of including FDG-PET/CT scanning in the management of PTLD should be evaluated in a larger prospective cohort study.
Resumo:
PURPOSE: (18)F-Fluorocholine (FCH) and (11)C-acetate (ACE) PET are widely used for detection of recurrent prostate cancer (PC). We present the first results of a comparative, prospective PET/CT study of both tracers evaluated in the same patients presenting with recurrence and low PSA to compare the diagnostic information provided by the two tracers. METHODS: The study group comprised 23 patients studied for a rising PSA level after radical prostatectomy (RP, 7 patients, PSA ≤ 3 ng/ml), curative radiotherapy (RT, 7 patients, PSA ≤ 5 ng/ml) or RP and salvage RT (9 patients, PSA ≤ 5 ng/ml). Both FCH and ACE PET/CT scans were performed in a random sequence a median of 4 days (range 0 to 11 days) apart. FCH PET/CT was started at injection (307 ± 16 MBq) with a 10-min dynamic acquisition of the prostate bed, followed by a whole-body PET scan and late (45 min) imaging of the pelvis. ACE PET/CT was performed as a double whole-body PET scan starting 5 and 22 min after injection (994 ± 72 MBq), and a late view (45 min) of the prostate bed. PET/CT scans were blindly reviewed by two independent pairs of two experienced nuclear medicine physicians, discordant subgroup results being discussed to reach a consensus for positive, negative end equivocal results. RESULTS: PET results were concordant in 88 out of 92 local, regional and distant findings (Cohen's kappa 0.929). In particular, results were concordant in all patients concerning local status, bone metastases and distant findings. Lymph-node results were concordant in 19 patients and different in 4 patients. On a per-patient basis results were concordant in 22 of 23 patients (14 positive, 5 negative and 3 equivocal). In only one patient was ACE PET/CT positive for nodal metastases while FCH PET/CT was overall negative; interestingly, the ACE-positive and FCH-negative lymph nodes became positive in a second FCH PET/CT scan performed a few months later. CONCLUSION: Overall, ACE and FCH PET/CT showed excellent concordance, on both a per-lesion and a per-patient basis, suggesting that both tracers perform equally for recurrent prostate cancer staging.