986 resultados para Crystallographic structure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

MnO2 is currently under extensive investigations for its capacitance properties. MnO2 crystallizes into several crystallographic structures, namely, α, β, γ, δ, and λ structures. Because these structures differ in the way MnO6 octahedra are interlinked, they possess tunnels or interlayers with gaps of different magnitudes. Because capacitance properties are due to tercalation/deintercalation of protons or cations in MnO2, only some crystallographic structures, which possess sufficient gaps to accommodate these ions, are expected to be useful for capacitance studies. In order to examine the dependence of capacitance on crystal structure, the present study involves preparation of these various crystal phases of MnO2 in nanodimensions and to evaluate their capacitance properties. Results of α-MnO2 prepared by a microemulsion route (α-MnO2(m)) are also used for comparison. Spherical particles of about 50 nm, nanorods of 30−50 nm in diameter, or interlocked fibers of 10−20 nm in diameters are formed, which depend on the crystal structure and the method of preparation. The specific capacitance (SC) measured for MnO2 is found to depend strongly on the crystallographic structure, and it decreases in the following order: α(m) > α δ > γ > λ > β. A SC value of 297 F g-1 is obtained for α-MnO2(m), whereas it is 9 F g-1 for β-MnO2. A wide (4.6 Å) tunnel size and large surface area of α-MnO2(m) are ascribed as favorable factors for its high SC. A large interlayer separation (7 Å) also facilitates insertion of cations in δ-MnO2 resulting in a SC close to 236 F g-1. A narrow tunnel size (1.89 Å) does not allow intercalation of cations into β-MnO2. As a result, it provides a very small SC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polycrystalline powder of para- and meta-dimethyl ester of pyromellitic acid (PMDE) have been prepared by fractional crystallization, and their crystal structures have been determined by Wide-Angle X-ray Diffraction (WAXD). Both p-PMDE and m-PMDE was found to be orthorhombic crystal system, and their unit cell parameters a = 0.840 nm, b = 0.707 nm, c = 1.136 nm and a = 1.032 nm; b = 0.835 nm, c = 0.714 nm, respectively. Space group all belongs to P-mmm. p-PMDE has two molecules per unit cell with crystal density 1.388 g . cm(-3), while m-PMDE has two molecules per unit cell with crystal density 1.522 g . cm(-3). Indices of crystal diffraction peaks are also detailed in the present work. The difference in crystal structures between p-PMDE and m-PMDE has thus been used to explain the curing behavior of isomerically pyromellitic dianhydride-based poly(amic ester)s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polycrystalline powder of the cyclic tetramer based on bisphenol A and o-phthaloyldichloride has been prepared by recrystallization from nitrobenzene and its crystal structure has been determined by Wide-Angle X-ray Diffraction (WAXD). The unit cell is orthorhombic and its dimensions a = 0.967 6 nm, b = 0.869 9 nm, c = 2.085 9 nm, Space group belongs to Pmmm, With two tetramers per unit cell,the crystal density is 1.36 g . cm(-3), Indices of crystal diffraction peaks are also detailed in the present work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polycrystalline powder of the cyclic tetramer ester based on bisphenol-A and o-phthaloyldichloride has been prepared by recrystallization from nitrobenzene and its crystal structure determined by wide-angle X-ray diffraction. The unit cell is orthorhombic and has dimensions a=0.967 nm, b=0.8699 nm, c = 2.0859 nm. With two tetramers per unit cell, the crystal density is 1.36 g cm(-3). Indices of crystal diffraction peaks are also detailed in the present work. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Xanthomonas axonopodis pv. citri (Xac or X citri), the modA gene codes for a periplasmic protein (ModA) that is capable of binding molybdate and tungstate as part of the ABC-type transporter required for the uptake of micronutrients. In this study, we report the crystallographic structure of the Xac ModA protein with bound molybdate. The Xac ModA structure is similar to orthologs with known three-dimensional structures and consists of two nearly symmetrical domains separated by a hinge region where the oxyanion-binding site lies. Phylogenetic analysis of different ModA orthologs based on sequence alignments revealed three groups of molybdate-binding proteins: bacterial phytopathogens, enterobacteria and soil bacteria. Even though the ModA orthologs are segregated into different groups, the ligand-binding hydrogen bonds are mostly conserved, except for Archaeglobus fulgidus ModA. A detailed discussion of hydrophobic interactions in the active site is presented and two new residues, Ala(38) and Ser(151), are shown to be part of the ligand-binding pocket. (c) 2007 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphofructokinase-1 and -2 (Pfk-1 and Pfk-2, respectively) from Escherichia coli belong to different homologous superfamilies. However, in spite of the lack of a common ancestor, they share the ability to catalyze the same reaction and are inhibited by the substrate MgATP. Pfk-2, an ATP-dependent 6-phosphofructokinase member of the ribokinase-like superfamily, is a homodimer of 66 kDa subunits whose oligomerization state is necessary for catalysis and stability. The presence of MgATP favors the tetrameric form of the enzyme. In this work, we describe the structure of Pfk-2 in its inhibited tetrameric form, with each subunit bound to two ATP molecules and two Mg ions. The present structure indicates that substrate inhibition occurs due to the sequential binding of two MgATP molecules per subunit, the first at the usual site occupied by the nucleotide in homologous enzymes and the second at the allosteric site, making a number of direct and Mg-mediated interactions with the first. Two configurations are observed for the second MgATP, one of which involves interactions with Tyr23 from the adjacent subunit in the dimer and the other making an unusual non-Watson-Crick base pairing with the adenine in the substrate ATP. The oligomeric state observed in the crystal is tetrameric, and some of the structural elements involved in the binding of the Substrate and allosteric ATPs are also participating in the dimer-dimer interface. This structure also provides the grounds to compare analogous features of the nonhomologous phosphofructokinases from E. coli. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Even being a bacterial purine nucleoside phosphorylase (PNP), which normally shows hexameric folding, the Mycobacterium tuberculosis PNP (MtPNP) resembles the mammalian trimeric structure. The crystal structure of the MtPNP apoenzyme was solved at 1.9 Angstrom resolution. The present work describes the first structure of MtPNP in complex with phosphate. In order to develop new insights into the rational drug design, conformational changes were profoundly analyzed and discussed. Comparisons over the binding sites were specially studied to improve the discussion about the selectivity of potential new drugs. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiogenesis inhibitors have gained much public attention recently as anti-cancer agents and several are currently in clinical trials, including angiostatin (Phase I, Thomas Jefferson University Hospital, Philadelphia, PA). We report here the bowl-shaped structure of angiostatin kringles 1-3, the first multi-kringle structure to be determined. All three kringle lysine-binding sites contain a bound bicine molecule of crystallization while the former of kringle 2 and kringle 3 are cofacial. Moreover, the separation of the kringle 2 and kringle 3 lysiner binding sites is sufficient to accommodate the a-helix of the 30 residue pepticle VEK-30 found in the kringle 2/VEK-30 complex. Together the three kringles produce a central cavity suggestive of a unique domain where they may function in concert. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Branching enzyme catalyzes the formation of alpha-1,6 branch points in either glycogen or starch. We report the 2.3-Angstrom crystal structure of glycogen branching enzyme from Escherichia coli. The enzyme consists of three major domains, an NH2-terminal seven-stranded beta-sandwich domain, a COOH-terminal domain, and a central alpha/beta-barrel domain containing the enzyme active site. While the central domain is similar to that of all the other amylase family enzymes, branching enzyme shares the structure of all three domains only with isoamylase. Oligosaccharide binding was modeled or branching enzyme using the enzyme-oligosaccharide complex structures of various alpha-amylases and cyclodextrin glucanotransferase and residues were implicated in oligosaccharide binding. While most of the oligosaccharides modeled well in the branching enzyme structure, an approximate 50degrees rotation between two of the glucose units was required to avoid steric clashes with Trp(298) of branching enzyme. A similar rotation was observed in the mammalian alpha-amylase structure caused by an equivalent tryptophan residue in this structure. It appears that there are two binding modes for oligosaccharides in these structures depending on the identity and location of this aromatic residue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase stability of a commercial purity (Ti-CP), high purity (Ti-HP) and Ti-6Al-4V alloy were investigated in a diamond anvil cell up to 32 GPa and 298 K using a polychromatic X-ray beam. The Ti-CP and Ti-HP shown the same HCP (c/a∼0.632) to Hexagonal (c/a∼1.63) non reversible martensitic transition at about 9 GPa. The as received Ti-6Al-4V shows a very low relative volume fraction β-Ti / α-Ti. No phase changes were observed in the Ti-6Al-4V alloy in the pressure range of this study. The α phase of the Ti-6Al-4V shows monotonic volume cell pressure dependence. This volume change is reversible and non-hysteretic. The cell of the a phase recovered its original volume when the pressure was released. © 2010 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystallographic and microstructural properties of Ho(Ni,Co,Mn)O3± perovskite-type multiferroic material are reported. Samples were synthesized with a modified polymeric precursor method. The synchrotron X-ray powder diffraction (SXRPD) technique associated to Rietveld refinement method was used to perform structural characterization. The crystallographic structures, as well as microstructural properties, were studied to determine unit cell parameters and volume, angles and atomic positions, crystallite size and strain. X-ray energies below the absorption edges of the transition metals helped to determine the mean preferred atomic occupancy for the substituent atoms. Furthermore, analyzing the degree of distortion of the polyhedra centered at the transitions metal atoms led to understanding the structural model of the synthesized phase. X-ray photoelectron spectroscopy (XPS) was performed to evaluate the valence states of the elements, and the tolerance factor and oxygen content. The obtained results indicated a small decrease distortion in structure, close to the HoMnO3 basis compound. In addition, the substituent atoms showed the same distribution and, on average, preferentially occupied the center of the unit cell.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Acta Crystallographica Section A: Foundations of Crystallography covers theoretical and fundamental aspects of the structure of matter. The journal is the prime forum for research in diffraction physics and the theory of crystallographic structure determination by diffraction methods using X-rays, neutrons and electrons. The structures include periodic and aperiodic crystals, and non-periodic disordered materials, and the corresponding Bragg, satellite and diffuse scattering, thermal motion and symmetry aspects. Spatial resolutions range from the subatomic domain in charge-density studies to nanodimensional imperfections such as dislocations and twin walls. The chemistry encompasses metals, alloys, and inorganic, organic and biological materials. Structure prediction and properties such as the theory of phase transformations are also covered.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Glial cell line-derived neurotrophic factor (GDNF) and its family members neurturin (NRTN), artemin (ARTN) and persephin (PSPN) are growth factors, which are involved in the development, differentiation and maintenance of many neuron types. In addition, they function outside of the nervous system, e.g. in the development of kidney, testis and liver. GDNF family ligand (GFL) signalling happens through a tetrameric receptor complex, which includes two glycosylphosphatidylinositol (GPI)-anchored GDNF family receptor (GFRα) molecules and two RET (rearranged during transfection) receptor tyrosine kinases. Each of the ligands binds preferentially one of the four GFRα receptors: GDNF binds to GFRα1, NRTN to GFRα2, ARTN to GFRα3 and PSPN to GFRα4. The signal is then delivered by RET, which cannot bind the GFLs on its own, but can bind the GFL-GFRα complex. Under normal cellular conditions, RET is only phosphorylated on the cell surface after ligand binding. At least the GDNF-GFRα1 complex is believed to recruit RET to lipid rafts, where downstream signalling occurs. In general, GFRαs consist of three cysteine-rich domains, but all GFRα4s except for chicken GFRα4 lack domain 1 (D1). We characterised the biochemical and cell biological properties of mouse PSPN receptor GFRα4 and showed that it has a significantly weaker capacity than GFRα1 to recruit RET to the lipid rafts. In spite of that, it can phosphorylate RET in the presence of PSPN and contribute to neuronal differentiation and survival. Therefore, the recruitment of RET to the lipid rafts does not seem to be crucial for the biological activity of all GFRα receptors. Secondly, we demonstrated that GFRα1 D1 stabilises the GDNF-GFRα1 complex and thus affects the phosphorylation of RET and contributes to the biological activity. This may be important in physiological conditions, where the concentration of the ligand or the soluble GFRα1 receptor is low. Our results also suggest a role for D1 in heparin binding and, consequently, in the biodistribution of released GFRα1 or in the formation of the GFL-GFRα-RET complex. We also presented the crystallographic structure of GDNF in the complex with GFRα1 domains 2 and 3. The structure differs from the previously published ARTN-GFRα3 structure in three significant ways. The biochemical data verify the structure and reveal residues participating in the interactions between GFRα1 and GDNF, and preliminarily also between GFRα1 and RET and heparin. Finally, we showed that, the precursor of the oncogenic MEN 2B (multiple endocrine neoplasia type 2) form of RET gets phosphorylated already during its synthesis in the endoplasmic reticulum (ER). We also demonstrated that it associates with Src homology 2 domain-containing protein (SHC) and growth factor receptor-bound protein (GRB2) in the ER, and has the capacity to activate several downstream signalling molecules.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The role of homogeneity in ex situ grown conductive coatings and dimensionality in the lithium storage properties of TiO(2) is discussed here. TiO(2) nanotube and nanosheet comprising of mixed crystallographic phases of anatase and TiO(2) (B) have been synthesized by an optimized hydrothermal method. Surface modifications of TiO(2) nanotube are realized via coating the nanotube with Ag nanoparticles and amorphous carbon. The first discharge cycle capacity (at current rate = 10 mA g(-1)) for TiO(2) nanotube and nanosheet were 355 mAh g(-1) and 225 mAhg(-1), respectively. The conductive surface coating stabilized the titania crystallographic structure during lithium insertion-deinsertion processes via reduction in the accessibility of lithium ions to the trapping sites. The irreversible capacity is beneficially minimized from 110 mAh g(-1) for TiO(2) nanotubes to 96 mAh g(-1) and 57 mAhg(-1) respectively for Ag and carbon modified TiO(2) nanotubes. The homogeneously coated amorphous carbon over TiO(2) renders better lithium battery performance than randomly distributed Ag nanoparticles coated TiO(2) due to efficient hopping of electrons. (C) 2011 Elsevier B.V. All rights reserved.