983 resultados para Cross listing decision
Resumo:
Finnish companies cross listing in the United States is an exceptional phenomenon. This study examines the cross listing decision, cross listing choice and cross listing process with associated challenges and critical factors. The aim is to create an in-depth understanding of the cross listing process and the required financial information. Based on that, the aim is to establish the process phases with the challenges and the critical factors that ought to be considered be- fore establishing the process plus re-evaluated and further considered at points in time during the process. The empirical part of this study is conducted as a qualitative study. The research data was collected through the adoption of two approaches, which are the interview approach and the textual data approach. The interviews were conducted with Finnish practitioners in the field of accounting and finance. The textual data was from publicly available publications of this phenomenon by the two BIG5 accounting companies worldwide. The results of this study demonstrate the benefits of cross listing in the U.S. are the better growth opportunities, the reduction of cost of capital and the production of higher quality financial information. In the decision making process companies should assess whether the benefits exceed the increased costs, the pressure for performance, the uncertainty of market recognition and the requirements of management. The exchange listing is seen as the most favourable cross listing choice for Finnish companies. The establishment of the processes for producing reliable, transparent and timely financial information was seen as both highly critical and very challenging. The critical success factors relating to the cross listing phases are the assessment and planning as well as the right mix of experiences and expertise. The timing plays important role in the process. The results mainly corroborate the literature concerning cross listing decision and choice. This study contributes to the literature on the cross listing process offering a useful model for the phases of the cross listing process.
Resumo:
This paper develops an approach to the analysis of cross-listing that brings together the financial and non-financial benefits of the phenomenon. We employ the real options framework, which offers a detailed characterisation of the strategic issues associated with cross-listing, in the context of internationalisation of emerging market firms. The associated hypotheses are tested using firm-level data from four large emerging market economies with different profiles in terms of institutional quality and financial development. This allows us to extend the existing literature by isolating the relative importance of institutional quality and financial development for the benefits of cross-listing.
Resumo:
Our objective was to develop a methodology to predict soil fertility using visible near-infrared (vis-NIR) diffuse reflectance spectra and terrain attributes derived from a digital elevation model (DEM). Specifically, our aims were to: (i) assemble a minimum data set to develop a soil fertility index for sugarcane (Sarcharum officinarum L.) (SFI-SC) for biofuel production in tropical soils; (ii) construct a model to predict the SFI-SC using soil vis-NIR spectra and terrain attributes; and (iii) produce a soil fertility map for our study area and assess it by comparing it with a green vegetation index (GVI). The study area was 185 ha located in sao Paulo State, Brazil. In total, 184 soil samples were collected and analyzed for a range of soil chemical and physical properties. Their vis-NIR spectra were collected from 400 to 2500 nm. The Shuttle Radar Topographic Mission 3-arcsec (90-m resolution) DEM of the area was used to derive 17 terrain attributes. A minimum data set of soil properties was selected to develop the SFI-SC. The SFI-SC consisted of three classes: Class 1, the highly fertile soils; Class 2, the fertile soils; and Class 3, the least fertile soils. It was derived heuristically with conditionals and using expert knowledge. The index was modeled with the spectra and terrain data using cross-validated decision trees. The cross-validation of the model correctly predicted Class 1 in 75% of cases, Class 2 in 61%, and Class 3 in 65%. A fertility map was derived for the study area and compared with a map of the GVI. Our approach offers a methodology that incorporates expert knowledge to derive the SFI-SC and uses a versatile spectro-spatial methodology that may be implemented for rapid and accurate determination of soil fertility and better exploration of areas suitable for production.
Resumo:
ABSTRACT : Research in empirical asset pricing has pointed out several anomalies both in the cross section and time series of asset prices, as well as in investors' portfolio choice. This dissertation aims to discover the forces driving some of these "puzzling" asset pricing dynamics and portfolio decisions observed in the financial market. Through the dissertation I construct and study dynamic general equilibrium models of heterogeneous investors in the presence of frictions and evaluate quantitatively their implications for financial-market asset prices and portfolio choice. I also explore the potential roots of puzzles in international finance. Chapter 1 shows that, by introducing jointly endogenous no-default type of borrowing constraints and heterogeneous beliefs in a dynamic general-equilibrium economy, many empirical features of stock return volatility can be reproduced. While most of the research on stock return volatility is empirical, this paper provides a theoretical framework that is able to reproduce simultaneously the cross section and time series stylized facts concerning stock returns and their volatility. In contrast to the existing theoretical literature related to stock return volatility, I don't impose persistence or regimes in any of the exogenous state variables or in preferences. Volatility clustering, asymmetry in the stock return-volatility relationship, and pricing of multi-factor volatility components in the cross section all arise endogenously as a consequence of the feedback between the binding of no-default constraints and heterogeneous beliefs. Chapters 2 and 3 explore the implications of differences of opinion across investors in different countries for international asset pricing anomalies. Chapter 2 demonstrates that several international finance "puzzles" can be reproduced by a single risk factor which captures heterogeneous beliefs across international investors. These puzzles include: (i) home equity preference; (ii) the dependence of firm returns on local and foreign factors; (iii) the co-movement of returns and international capital flows; and (iv) abnormal returns around foreign firm cross-listing events in the local market. These are reproduced in a setup with symmetric information and in a perfectly integrated world with multiple countries and independent processes producing the same good. Chapter 3 shows that by extending this framework to multiple goods and correlated production processes; the "forward premium puzzle" arises naturally as a compensation for the heterogeneous expectations about the depreciation of the exchange rate held by international investors. Chapters 2 and 3 propose differences of opinion across international investors as the potential resolution of several international finance `puzzles'. In a globalized world where both capital and information flow freely across countries, this explanation seems more appealing than existing asymmetric information or segmented markets theories aiming to explain international finance puzzles.
Resumo:
The explosion of multimedia digital content and the development of technologies that go beyond traditional broadcast and TV have rendered access to such content important for all end-users of these technologies. While originally developed for providing access to multimedia digital libraries, video search technologies assume now a more demanding role. In this paper, we attempt to shed light onto this new role of video search technologies, looking at the rapid developments in the related market, the lessons learned from state of art video search prototypes developed mainly in the digital libraries context and the new technological challenges that have risen. We focus on one of the latter, i.e., the development of cross-media decision mechanisms, drawing examples from REVEAL THIS, an FP6 project on the retrieval of video and language for the home user. We argue, that efficient video search holds a key to the usability of the new ”pervasive digital video” technologies and that it should involve cross-media decision mechanisms.
Resumo:
It has been suggested that converting, via a process of cross-coding, the listing used by the Swiss Disability Insurance (SDI) for their statistics into codes of the International Classification of Impairments, Disabilities, and Handicaps (ICIDH) would improve the quality and international comparability of disability statistics for Switzerland. Using two different methods we tested the feasibility of this cross-coding on a consecutive sample of 204 insured persons, examined at one of the medical observation centres of the SDI. Cross-coding is impossible, for all practical purposes, in a proportion varying between 30% and 100%, depending on the method of cross-coding, the level of disablement and the required quality of the resulting codes. Failure is due to lack of validity of the SDI codes: diseases are poorly described, consequences of diseases (disability and handicap, including loss of earning capacity), insufficiently described or not at all. Assessment of disability and handicap would provide necessary information for the SDI. It is concluded that the SDI should promote the use of the ICIDH in Switzerland, especially among medical practitioners whose assessment of work capacity is the key element in the decision to award benefits or propose rehabilitation.
Resumo:
Time, cost and quality achievements on large-scale construction projects are uncertain because of technological constraints, involvement of many stakeholders, long durations, large capital requirements and improper scope definitions. Projects that are exposed to such an uncertain environment can effectively be managed with the application of risk management throughout the project life cycle. Risk is by nature subjective. However, managing risk subjectively poses the danger of non-achievement of project goals. Moreover, risk analysis of the overall project also poses the danger of developing inappropriate responses. This article demonstrates a quantitative approach to construction risk management through an analytic hierarchy process (AHP) and decision tree analysis. The entire project is classified to form a few work packages. With the involvement of project stakeholders, risky work packages are identified. As all the risk factors are identified, their effects are quantified by determining probability (using AHP) and severity (guess estimate). Various alternative responses are generated, listing the cost implications of mitigating the quantified risks. The expected monetary values are derived for each alternative in a decision tree framework and subsequent probability analysis helps to make the right decision in managing risks. In this article, the entire methodology is explained by using a case application of a cross-country petroleum pipeline project in India. The case study demonstrates the project management effectiveness of using AHP and DTA.
Resumo:
Objective: To develop a model to predict the bleeding source and identify the cohort amongst patients with acute gastrointestinal bleeding (GIB) who require urgent intervention, including endoscopy. Patients with acute GIB, an unpredictable event, are most commonly evaluated and managed by non-gastroenterologists. Rapid and consistently reliable risk stratification of patients with acute GIB for urgent endoscopy may potentially improve outcomes amongst such patients by targeting scarce health-care resources to those who need it the most. Design and methods: Using ICD-9 codes for acute GIB, 189 patients with acute GIB and all. available data variables required to develop and test models were identified from a hospital medical records database. Data on 122 patients was utilized for development of the model and on 67 patients utilized to perform comparative analysis of the models. Clinical data such as presenting signs and symptoms, demographic data, presence of co-morbidities, laboratory data and corresponding endoscopic diagnosis and outcomes were collected. Clinical data and endoscopic diagnosis collected for each patient was utilized to retrospectively ascertain optimal management for each patient. Clinical presentations and corresponding treatment was utilized as training examples. Eight mathematical models including artificial neural network (ANN), support vector machine (SVM), k-nearest neighbor, linear discriminant analysis (LDA), shrunken centroid (SC), random forest (RF), logistic regression, and boosting were trained and tested. The performance of these models was compared using standard statistical analysis and ROC curves. Results: Overall the random forest model best predicted the source, need for resuscitation, and disposition with accuracies of approximately 80% or higher (accuracy for endoscopy was greater than 75%). The area under ROC curve for RF was greater than 0.85, indicating excellent performance by the random forest model Conclusion: While most mathematical models are effective as a decision support system for evaluation and management of patients with acute GIB, in our testing, the RF model consistently demonstrated the best performance. Amongst patients presenting with acute GIB, mathematical models may facilitate the identification of the source of GIB, need for intervention and allow optimization of care and healthcare resource allocation; these however require further validation. (c) 2007 Elsevier B.V. All rights reserved.