126 resultados para Crocidura russula
Resumo:
We used mitochondrial cyt b sequences to investigate the phylogenetic relationships of Crocidura russula (sensu lato) populations across the Strait of Gibraltar, western Europe, Maghreb, and the Mediterranean and Atlantic islands. This revealed very low genetic divergence between European and Moroccan populations. The application of a molecular clock previously calibrated for shrews suggested that the separation of European from Moroccan lineages occurred less than 60 000 bp, which is at least 5 million years (Myr) after the reopening of the Strait of Gibraltar. This means that an overwater dispersal event was responsible for the observed phylogeographical structure. In contrast, genetic analyses revealed that Moroccan populations were highly distinct from Tunisian ones. According to the molecular clock, these populations separated about 2.2 million years ago (Ma), a time marked by sharp alternations of dry and humid climates in the Maghreb. The populations of the Mediterranean islands Ibiza, Pantelleria, and Sardinia were founded from Tunisian populations by overwater dispersal. In conclusion, overwater dispersal across the Strait of Gibraltar, probably assisted by humans, is possible for small terrestrial vertebrates. Moreover, as in Europe, Quaternary climatic fluctuations had a major effect on the phylogeographical structure of the Maghreb biota.
Resumo:
Crocidura russula is restricted to the vicinity of human dwellings in the northern parts of its range and in the mountain regions of Central and Western Europe. In order to better understand the causes of such a distribution, a population was studied in a rural mountain habitat (750 m above sea level), where the species was found almost exclusively in the neighbourhood of human dwellings. The study was conducted on a 2000 m2 area, over a period of 20 months, by live-trapping and radioactive tracking. The abundance, the local distribution and the behaviour of the shrews vary greatly throughout the year. In summer, they chiefly inhabit areas with a dense herbaceous cover or shruby vegetation; they are mainly active at ground level, in the litter. In autumn, changes in the environmental conditions (lowering of temperatures, subsidence of the herbaceous vegetation, presence of snow) create important energetic problems. At that time, the shrews gradually become more active around and inside compost-heaps and buildings. The microclimate of such environments is mild and prey are numerous. The winter population is reduced (reaching its lowest level in late winter) and consists only of shrews frequenting these sites. The observed spatial distribution is the result of the energetic dependence of the wintering shrews on human dwellings and their surroundings. This dependence is probably related to the physiological characteristics of the species. In the prospected region, Crocidura russula is the only shrew which regularly takes advantage of man-made habitats; the maintenance of the species in the rural mountain enviroment is probably favoured by the social organization of the populations in winter. The other native Soricids are observed only occasionaly int he neighbourhood of human dwellings.
Resumo:
Individual differences in Rank gland secretions were examined among males of the monogamous shrew Crocidura russula during the breeding and nonbreeding seasons. Gas chromatography was used to measure intra- and interindividual variation of flank gland secretions of free-ranging shrews from different populations. The number of compounds detected by gas chromatographic analyses was correlated with body mass, flank gland size, and the presence of blood parasites in individual shrews. Very few compounds were detected from the Bank gland area of juvenile males. After they reached sexual maturity, however, the number of compounds detected from the Rank gland secretions increased significantly. At the beginning of the reproductive season 48 different compounds were detected from male flank gland secretions. In the middle of the breeding season 70 compounds were detected, while only 11 compounds were detected during the nonbreeding season. Few compounds were common to all males. There were more volatile compounds in the Bank gland secretions of males in the beginning of the breeding season than later in the breeding season. Males from the same population had fewer differences in the elution profile of compounds than males from different populations indicating that individuals from a distinct population have similar elution profiles of compounds and that each population has its own type of elution profile. No correlations were found between the number of compounds detected by gas chromatography for each male and the male's body mass or flank gland size. Blood parasites (trypanosomes, Trypanosoma crocidurae) were found in only three of 30 males investigated.
Sex-specific selective pressures on body mass in the greater white-toothed shrew, Crocidura russula.
Resumo:
The direction, intensity and shape of viability-, sexual- and fecundity selection on body mass were investigated in a natural population of the greater white-toothed shrew (Crocidura russula), combining parentage assignment through molecular techniques and mark-recapture data over several generations. A highly significant stabilizing viability selection was found in both sexes, presumably stemming from the constraints imposed by their insectivorous habits and high metabolic costs. Sexual selection, directional in both sexes, was twice as large in males than in females. Our results suggest that body mass matters in this context by facilitating the acquisition and defense of a breeding territory. No fecundity selection could be detected. The direction of sexual size dimorphism (SSD) was in agreement with the observed pattern of selective pressures: males were heavier than females, because of stronger sexual selection. SSD intensity, however, was low compared with other mammals, because of the low level of polygyny, the active role of females in territory defense and the intensity of stabilizing viability selection.
Resumo:
The effects of temperature and food shortage on the occurrence of torpor have been studied in a medium-weight shrew, Crocidura russula (9-13 g). When fed ad libitum. the shrews cannot be forced into torpor by a sudden decrease of the ambiant temperature (from22°C to 3°C). At 22°C, a progressive restriction of the daily food ration, to below 3 g of mealworms, induces torpors of increasing duration, a reduction of the daily activity and a reduction of the body weight. The minimal daily food ration required for survivals is 1 to 1,5 G. At low ambiant temperature (e.g. 5°C), torpor can be induced at higher food levels (4-5g).
Resumo:
Abstract Life history traits encompass all the decisions concerning fitness an individual is faced with during his life. The study of these traits is crucial to understand the factors shaping the biology of living organisms. Up until now, most of the information on the evolution of life history traits comes from laboratory studies. While these studies are interesting to test the effect of specific parameters, their conclusions are difficult to extrapolate to natural populations. Investigating the evolution of life history traits in natural populations is of great interest. This may be tricky because it requires information on reproduction, survival and morphology of individuals. Mark-recapture methods allow most of this information to be obtained. However, when direct observations of a species are not possible due to its ecology, indirect methods must be used to infer lifetime reproductive success. In this case, molecular markers are particularly helpful in assessing the genetic relationships between individuals and allow the construction of a pedigree. This thesis focuses on a natural population of a small insectivorous mammal, the greater white-toothed shrew, Crocidura russula. Because of its hidden lifestyle, the two complementary techniques mentioned above were combined to gather information on this population. The data were used to explore diverse aspects of evolutionary biology. We demonstrated that the high genetic variance displayed by the species was not maintained by its mating system because this shrew was less monogamous than previously thought. The large genetic diversity was most likely promoted by gene flow from the neighborhood. Dispersal was thus a central topic in this thesis. We showed that dispersal was not driven by inbreeding avoidance. In addition, we did not find any inbreeding depression in the population. Dispersal was promoted by a high number of vacant territories in the population for both sexes, meaning that territory acquisition played an important role in driving dispersal. Moreover, dispersal propensity was shown to have a genetic basis and, once achieved, to have no effect on individual fitness. Body mass was found to be a life history trait strongly influenced by sexual and viability selection in both sexes. Larger individuals had higher access to reproduction through territory acquisition and defense than lighter ones. By contrast, intermediate size individuals were favored by viability selection presumably because of ecological constraints and metabolic costs. Finally, we demonstrated that the majority of the life history traits in our shrew population has the potential to evolve because they maintained substantial amounts of additive genetic variance. Nonetheless, life history traits had no significant heritability due to their high level of nonadditive or environmental variance. Résumé Les traits d'histoire de vie comprennent toutes les décisions auxquelles un individu est confronté au cours de sa vie et qui concernent sa valeur adaptative. L'étude de ces traits est cruciale pour comprendre les facteurs qui façonnent la biologie des êtres vivants. Jusqu'à ce jour, la majorité des informations sur l'évolution des traits d'histoire de vie provient d'études réalisées en laboratoire. Alors que ces études sont intéressantes pour tester l'effet de paramètres spécifiques, leurs conclusions sont difficilement extrapolables aux populations naturelles. Il est particulièrement intéressant d'étudier l'évolution des traits d'histoire de vie dans des populations naturelles. Toutefois, ces études peuvent se révéler difficiles parce qu'elles requièrent des informations sur la reproduction, la survie et la morphologie des individus. Des méthodes de marquage-recapture permettent d'obtenir ces informations. Cependant, lorsque l'écologie de l'espèce rend les obervations directes impossibles, des méthodes indirectes doivent être utilisées pour obtenir le succès reproducteur des individus. Dans ce cas, les marqueurs moléculaires sont particulièrement utiles pour évaluer les relations génétiques entre individus et permettre la construction d'un pedigree. Cette thèse porte sur une population naturelle d'un petit mammifère insectivore, la musaraigne musette, Crocidura russula. Parce que cette espèce présente un mode de vie souterrain, les deux techniques complémentaires mentionnées ci-dessus ont été combinées pour acquérir les informations nécessaires. Les données ont été utilisées pour explorer divers aspects de biologie evolutive. Nous avons montré que la grande quantité de variance génétique trouvée chez cette espèce n'est pas maintenue par son système d'appariement. Celle-ci s'est en effet avérée être moins monogame que ce qui était admis jusqu'ici. Sa grande diversité génétique est plutôt entretenue par le flux de gènes provenant du voisinage. La dispersion a donc été un sujet phare dans cette thèse. Nous avons montré qu'elle n'est pas provoquée par un évitement de la consanguinité et nous n'avons pas trouvé de dépression de consanguité dans notre population. L'acquisition d'un territoire joue par contre un rôle important dans la dispersion. En outre, la dispersion possède une base génétique chez cette espèce. De plus, une fois qu'ils ont dispersé, les individus n'ont pas une valeur adaptative differente d'individus philopatriques. Le poids s'est avéré être un trait d'histoire de vie fortement influencé par la sélection sexuelle et de viabilité chez les deux sexes. Les gros individus ont accès à la reproduction parce qu'ils acquièrent et défendent un territoire plus facilement que les plus légers. Au contraire, les individus de taille intermédiaire sont favorisés par la sélection de viabilité, certainement à cause de contraintes écologiques et de coûts métaboliques. Finalement, nous avons montré que la majorité des traits d'histoire de vie dans notre population a le potentiel d'évoluer parce qu'elle maintient des quantités considérables de variance génétique additive. Néanmoins, l'héritabilité de ces traits d'histoire de vie n'est pas significative à cause de la grande quantité de variance non-additive ou environmentale associée à ces traits.
Resumo:
Y chromosome variation is determined by several confounding factors including mutation rate, effective population size, demography, and selection. Disentangling these factors is essential to better understand the evolutionary properties of the Y chromosome. We analyzed genetic variation on the Y chromosome, X chromosome, and mtDNA of the greater white-toothed shrew, a species with low variance in male reproductive success and limited sex-biased dispersal, which enables us to control to some extent for life-history effects. We also compared ancestral (Moroccan) to derived (European) populations to investigate the role of demographic history in determining Y variation. Recent colonization of Europe by a small number of founders (combined with low mutation rates) is largely responsible for low diversity observed on the European Y and X chromosomes compared to mtDNA. After accounting for mutation rate, copy number, and demography, the Y chromosome still displays a deficit in variation relative to the X in both populations. This is possibly influenced by directional selection, but the slightly higher variance in male reproductive success is also likely to play a role, even though the difference is small compared to that in highly polygynous species. This study illustrates that demography and life-history effects should be scrutinized before inferring strong selective pressure as a reason for low diversity on the Y chromosome.
Resumo:
The distribution limits of Crocidura russula (Hermann, 1780) and C. leucodon (Hermann, 1780) were investigated during an interval of 25 years in the bottom of the Rhone valley above Lake Geneva, Switzerland (total data set: 105 spatio-temporal occurrences, 1137 shrews). In 1975, the contact zone between the two species was situated in the region of Martigny. In 1999/2000, new sampling revealed three results: (1) The contact zone showed an upward shift of about 25 km. (2) In the expanded range of C. russula, the resident species has totally disappeared (confirmed by owl pellets analysis). (3) This demonstrates a dominance of C, russula over C. leucodon. Three hypotheses which may explain the range expansion of C. russula were evaluated: (1) habitat modification favouring linear dispersal due to the construction of a highway; (2) temporal event favoured by climate fluctuations, or (3) ongoing postglacial colonisation of Europe. Hypothesis 1 was rejected, because the progression of the shrews anticipated the construction. Hypothesis 3 received only weak support because range limits of C. russula in the region of Nice have been stable for thousands of years. Therefore hypothesis 2, admitting that ongoing climate change has facilitated range expansion, is the most probable.
Resumo:
In order to investigate the determinants of effective population size in the socially monogamous Crocidura russula, the reproductive output of 44 individuals was estimated through genetic assignment methods. The individual variance in breeding success turned out to be surprisingly high, mostly because the males were markedly less monogamous than expected from previous behavioural data. Males paired simultaneously with up to four females and polygynous males had significantly more offspring than monogamous ones. The variance in female reproductive success also exceeded that of a Poisson distribution (though to a lesser extent), partly because females paired with multiply mated males weaned significantly more offspring. Polyandry also occurred occasionally, but only sequentially (i.e. without multiple paternity of litters). Estimates of the effective to census size ratio were ca. 0.60, which excluded the mating system as a potential explanation for the high genetic variance found in this shrew's populations. Our data suggest that gene flow from the neighbourhood (up to one-third of the total recruitment) is the most likely cause of the high levels of genetic diversity observed in this shrew's subpopulations.
Resumo:
A selection gradient was recently suggested as one possible cause for a clinal distribution of mitochondrial DNA (mtDNA) haplotypes along an altitudinal transect in the greater white-toothed shrew, Crocidura russula (Ehinger et al. 2002). One mtDNA haplotype (H1) rare in lowland, became widespread when approaching the altitudinal margin of the distribution. As H1 differs from the main lowland haplotype by several nonsynonymous mutations (including on ATP6), and as mitochondria play a crucial role in metabolism and thermogenesis, distribution patterns might stem from differences in the thermogenic capacity of different mtDNA haplotypes. In order to test this hypothesis, we measured the nonshivering thermogenesis (NST) associated with different mtDNA haplotypes. Sixty-two shrews, half of which had the H1 haplotype, were acclimated in November at semioutdoor conditions and measured for NST throughout winter. Our results showed the crucial role of NST for winter survival in C. russula. The individuals that survived winter displayed a higher significant increase in NST during acclimation, associated with a significant gain in body mass, presumably from brown fat accumulation. The NST capacity (ratio of NST to basal metabolic rate) was exceptionally high for such a small species. NST was significantly affected by a gender x haplotype interaction after winter-acclimation: females bearing the H1 haplotype displayed a better thermogenesis at the onset of the breeding season, while the reverse was true for males. Altogether, our results suggest a sexually antagonistic cyto-nuclear selection on thermogenesis.
Resumo:
Indirect evidence from trapping suggests that Crocidura russula is less solitary and territorial than other shrews. To study the social organization and mating system, free-ranging adult and juvenile C. russula were tracked simultaneously throughout the year using a radioactive tracking technique. Coincident rest, coincident activity and home range overlap were measured. During winter, all individuals used the same communal nest and spent on average 84% of their total rest in coincident rest. This led to a large home range overlap (52% on average). Coincident activity was low (2% on average). At the onset of the reproductive season the females became, territorial and shared their nest with only one male. During pair formation, coincident activity and home range overlap were significantly greater between than within sexes. The social organization of C. russula appeared to be strongly influenced by season and differed in this respect from the other species in the genus Sorex which are territorial throughout the year.
Resumo:
In order to evaluate the reaction to conspecifics scent tracks of Crocidura russula, a shrew with poorly developped territorial behaviour, simple choice tests in a Y-shaped systems were used. C. russula prefers a marked path to an unmarked one, the tracks of an unknown individual to its own, the tracks of an individual of the opposite sex to those of an individual of the same sex, and the tracks of its sexual partner to those of another individual of the same sex. The choices between two tracks gave a less obvious result than the choices between a marked path and an unmarked one. Ecological and social implications of these results are discussed.
Resumo:
We combined mark-and-recapture studies with genetic techniques of parentage assignment to evaluate the interactions between mating, dispersal, and inbreeding, in a free-ranging population of Crocidura russula. We found a pattern of limited and female-biased dispersal, followed by random mating within individual neighborhoods. This results in significant inbreeding at the population level: mating among relatives occurs more often than random, and F(IT) analyses reveal significant deficits in heterozygotes. However, related mating partners were not less fecund, and inbred offspring had no lower lifetime reproductive output. Power analyses show these negative results to be quite robust. Absence of phenotypic evidence of inbreeding depression might result from a history of purging: local populations are small and undergo disequilibrium gene dynamics. Dispersal is likely caused by local saturation and (re)colonization of empty breeding sites, rather than inbreeding avoidance.
Resumo:
The population-genetic consequences of monogamy and male philopatry (a rare breeding system in mammals) were investigated using microsatellite markers in the semisocial and anthropophilic shrew Crocidura russula. A hierarchical sampling design over a 16-km geographical transect revealed a large genetic diversity (h = 0.813) with significant differentiation among subpopulations (F-ST = 5-6%), which suggests an exchange of 4.4 migrants per generation. Demic effective-size estimates were very high, due both to this limited gene inflow and to the inner structure of subpopulations. These were made of 13-20 smaller units (breeding groups), comprising an estimate of four breeding pairs each. Members of the same breeding groups displayed significant coancestries (F-LS = 9-10%), which was essentially due to strong male kinship: syntopic males were on average related at the half-sib level. Female dispersal among breeding groups was not complete (similar to 39%), and insufficient to prevent inbreeding. From our results, the breeding strategy of C. russula seems less efficient than classical mammalian systems (polygyny and male dispersal) in disentangling coancestry from inbreeding, but more so in retaining genetic variance.